LIU Junyi, CHEN Erding, LI Guangquan, YUAN Li. Experimental Study of Drilling Fluid Cooling in Deep Wells Based on Phase Change Heat Storage[J]. Petroleum Drilling Techniques, 2021, 49(1): 53-58. DOI: 10.11911/syztjs.2020131
Citation: LIU Junyi, CHEN Erding, LI Guangquan, YUAN Li. Experimental Study of Drilling Fluid Cooling in Deep Wells Based on Phase Change Heat Storage[J]. Petroleum Drilling Techniques, 2021, 49(1): 53-58. DOI: 10.11911/syztjs.2020131

Experimental Study of Drilling Fluid Cooling in Deep Wells Based on Phase Change Heat Storage

More Information
  • Received Date: May 04, 2020
  • Revised Date: November 08, 2020
  • Available Online: November 29, 2020
  • Focusing on such problems as poor high-temperature stability of drilling fluids and downhole instruments in the development of deep gas and oil, phase change materials were introduced into drilling fluids for the first time to model the cooling of drilling fluids in deep wells based on phase change heat storage principle. First, the heat storage characteristics of the phase change materials were investigated on the basis of evaluating the thermophysical properties of the phase change materials. Then, the influence of phase change materials on the rheological and filtration properties of drilling fluids was comparatively evaluated. Finally, the experimental curves for the cooling performance of drilling fluids were measured using a self-made experimental device of drilling fluid circulating simulation. The results showed that the phase change temperature and the latent heat of phase change for the phase change materials 1#–3#were approximately 120–145 °C and 90.3–280.6 J/g, respectively; and the phase change material 2# displayed the highest latent heat and the best heat storage performance of the phase change, exhibiting a compatibility withdrilling fluid. Specifically, the viscosity, shear force, and filtration of the drilling fluids were basically unchanged when the concentration of the phase change material 2# increased to 12%, and the circulating temperature of the drilling fluids could be reduced by about 20 ℃, correspondingly. In addition, the phase change material 2# exhibited excellent reuse properties. In conclusion, the circulating temperature of the drilling fluids could be reduced by referring to the principle of phase change heat storage of phase change materials, which could provide a new technical thinking to apply to cooling technologies for high-temperature drilling fluids in deep wells.
  • [1]
    丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20. doi: 10.11911/syztjs.2020069

    DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20. doi: 10.11911/syztjs.2020069
    [2]
    徐春春,邹伟宏,杨跃明,等. 中国陆上深层油气资源勘探开发现状及展望[J]. 天然气地球科学,2017,28(8):1139–1153.

    XU Chunchun, ZOU Weihong, YANG Yueming, et al. Status and prospects of exploration and exploitation of the deep oil & gas resources onshore China[J]. Natural Gas Geoscience, 2017, 28(8): 1139–1153.
    [3]
    石昕,戴金星,赵文智. 深层油气藏勘探前景分析[J]. 中国石油勘探,2005,10(1):1–10. doi: 10.3969/j.issn.1672-7703.2005.01.001

    SHI Xin, DAI Jinxing, ZHAO Wenzhi. Analysis of deep oil and gas reservoirs exploration prospect[J]. China Petroleum Exploration, 2005, 10(1): 1–10. doi: 10.3969/j.issn.1672-7703.2005.01.001
    [4]
    闫光庆,张金成. 中国石化超深井钻井技术现状与发展建议[J]. 石油钻探技术,2013,41(2):1–6. doi: 10.3969/j.issn.1001-0890.2013.02.001

    YAN Guangqing, ZHANG Jincheng. Status and proposal of the Sinopec ultra-deep drilling technology[J]. Petroleum Drilling Techniques, 2013, 41(2): 1–6. doi: 10.3969/j.issn.1001-0890.2013.02.001
    [5]
    孙金声,黄贤斌,吕开河,等. 提高水基钻井液高温稳定性的方法、技术现状与研究进展[J]. 中国石油大学学报(自然科学版),2019,43(5):73–81.

    SUN Jinsheng, HUANG Xianbin, LYU Kaihe, et al. Methods, technical progress and research advance of improving high-temperature stability of water based drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(5): 73–81.
    [6]
    刘清友,湛精华,黄云,等. 深井、超深井高温高压井下工具研究[J]. 天然气工业,2005,25(10):73–75. doi: 10.3321/j.issn:1000-0976.2005.10.025

    LIU Qingyou, ZHAN Jinghua, HUANG Yun, et al. Study on high temperature and pressure down-hole tools of deep and super-deep wells[J]. Natural Gas Industry, 2005, 25(10): 73–75. doi: 10.3321/j.issn:1000-0976.2005.10.025
    [7]
    杨晓峰. 抗高温sureshot MWD在兴古7块的应用[J]. 石油钻探技术,2012,40(1):119–122. doi: 10.3969/j.issn.1001-0890.2012.01.024

    YANG Xiaofeng. Application of high temperature resisting sureshot-MWD in Xinggu 7 Block[J]. Petroleum Drilling Techniques, 2012, 40(1): 119–122. doi: 10.3969/j.issn.1001-0890.2012.01.024
    [8]
    陈作,许国庆,蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术,2019,47(6):1–8.

    CHEN Zuo, XU Guoqing, JIANG Manqi. The current status and development recommendations for dry hot rock fracturing technologies at home and abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1–8.
    [9]
    马青芳. 钻井液冷却技术及装备综述[J]. 石油机械,2016,44(10):42–46.

    MA Qingfang. Discussion on drilling fluid cooling technology and equipment[J]. China Petroleum Machinery, 2016, 44(10): 42–46.
    [10]
    MAURY V, GUENOT A. Practical advantages of mud cooling systems for drilling[J]. SPE Drilling & Completion, 1995, 10(1): 42–48.
    [11]
    赵江鹏,孙友宏,郭威. 钻井泥浆冷却技术发展现状与新型泥浆冷却系统的研究[J]. 探矿工程(岩土钻掘工程),2010,37(9):1–5.

    ZHAO Jiangpeng, SUN Youhong, GUO Wei. Current situation of drilling mud cooling technology and research on a new type of drilling mud cooling system[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2010, 37(9): 1–5.
    [12]
    SALGADO SANCHEZ P, EZQUERRO J M, Porter J, et al. Effect of thermo-capillary convection on the melting of phase change materials in microgravity: experiments and simulations[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119717. doi: 10.1016/j.ijheatmasstransfer.2020.119717
    [13]
    宋建建,许明标,王晓亮,等. 新型相变材料对低热水泥浆性能的影响[J]. 钻井液与完井液,2019,36(2):218–223. doi: 10.3969/j.issn.1001-5620.2019.02.015

    SONG Jianjian, XU Mingbiao, WANG Xiaoliang,et al. The effects of a new phase change material on the properties of low heat cement slurries[J]. Drilling Fluid & Completion Fluid, 2019, 36(2): 218–223. doi: 10.3969/j.issn.1001-5620.2019.02.015
    [14]
    MIAO Chunyan, LU Gang, YAO Youwei, et al. Preparation of shape-stabilized phase change materials as temperature-adjusting powder[J]. Frontiers of Materials Science in China, 2007, 1(3): 284–287. doi: 10.1007/s11706-007-0051-8
    [15]
    孙茹茹,李化建,黄法礼,等. 相变材料在水泥基材料中的应用[J]. 硅酸盐通报,2020,39(3):662–668, 676.

    SUN Ruru, LI Huajian, HUANG Fali, et al. Application of phase change materials in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 662–668, 676.
  • Cited by

    Periodical cited type(22)

    1. 佘朝毅. 四川盆地深层页岩气钻井关键技术新进展及发展展望. 天然气工业. 2024(03): 1-9 .
    2. 路智勇,刘莉,姜宇玲,张谦,湛小红,肖佳林. 涪陵气田立体开发地质工程一体化实践. 中国石油勘探. 2024(03): 10-20 .
    3. 王能,邹亚平,田秀明. 工程地质一体化在宁XX-3井的应用. 西部探矿工程. 2023(01): 79-81 .
    4. 王维,韩金良,王玉斌,杨干,苗强,辛江,李猛. 大宁-吉县区块深层煤岩气水平井钻井技术. 石油机械. 2023(11): 70-78 .
    5. 付强. 四川盆地页岩气超长水平段水平井钻井实践与认识. 钻采工艺. 2022(04): 9-18 .
    6. 张益,卜向前,齐银,杨永智,陈亚舟,侯晓云,王瑞,张斌,同松. 鄂尔多斯盆地姬塬油田长7段页岩油藏地质工程一体化油藏开发对策——以安83井区为例. 中国石油勘探. 2022(05): 116-129 .
    7. 陈更生,吴建发,刘勇,黄浩勇,赵圣贤,常程,钟成旭. 川南地区百亿立方米页岩气产能建设地质工程一体化关键技术. 天然气工业. 2021(01): 72-82 .
    8. 陆自清. 基于卡尔曼滤波的动态地质模型导向方法. 石油钻探技术. 2021(01): 113-120 . 本站查看
    9. 孙焕泉,周德华,蔡勋育,王烽,冯动军,卢婷. 中国石化页岩气发展现状与趋势. 中国石油勘探. 2020(02): 14-26 .
    10. 陈四平,谭判,石文睿,赵红燕. 涪陵页岩气优质储层测井综合评价方法. 石油钻探技术. 2020(04): 131-138 . 本站查看
    11. 张合文,崔明月,张宝瑞,赫安乐,晏军,梁冲,郭双根,贾洪革,马良. 低渗透薄层难动用边际油藏地质工程一体化技术——以滨里海盆地Zanazour油田为例. 中国石油勘探. 2019(02): 203-209 .
    12. 郑述权,谢祥锋,罗良仪,景洋,唐梦,杨瑞帆,钟广荣,王军,陈正云. 四川盆地深层页岩气水平井优快钻井技术——以泸203井为例. 天然气工业. 2019(07): 88-93 .
    13. 岳砚华,伍贤柱,张庆,赵晗,姜巍. 川渝地区页岩气勘探开发工程技术集成与规模化应用. 天然气工业. 2018(02): 74-82 .
    14. 屈华业. 外围油田钻井地质分层设计方法研究. 西部探矿工程. 2018(08): 53-54+56 .
    15. 罗鑫,张树东,王云刚,简利,张德军. 昭通页岩气示范区复杂地质条件下的地质导向技术. 钻采工艺. 2018(03): 29-32+6-7 .
    16. 吴宝玉,夏宏泉,阳大祥,王孝忠,王勇. 多学科结合地质导向技术在川东复杂地层中的应用. 国外测井技术. 2018(04): 8-11 .
    17. 郑杰. 四川盆地长宁地区页岩气井压裂效果影响因素分析及对策研究. 重庆科技学院学报(自然科学版). 2017(03): 1-6 .
    18. 顾林元. 页岩气水平井轨迹导向物探技术方法. 江汉石油科技. 2017(02): 40-43 .
    19. 章敬,罗兆,徐明强,江洪,陈仙江,王腾飞,罗洪. 新疆油田致密油地质工程一体化实践与思考. 中国石油勘探. 2017(01): 12-20 .
    20. 王昕,杨斌,王瑞. 吐哈油田低饱和度油藏地质工程一体化效益勘探实践. 中国石油勘探. 2017(01): 38-45 .
    21. 吴宗国,梁兴,董健毅,李兆丰,张朝,王高成,高阳,李峋. 三维地质导向在地质工程一体化实践中的应用. 中国石油勘探. 2017(01): 89-98 .
    22. 杨远,何幼斌,罗进雄. 基于复合数学模型的致密油地质工程一体化开采理念与路线. 中外能源. 2017(07): 27-35 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (638) PDF downloads (130) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return