Citation: | HAN Yujiao. Intelligent Fluid Identification Based on the AdaBoost Machine Learning Algorithm for Reservoirs in Daniudi Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(1): 112-118. DOI: 10.11911/syztjs.2022018 |
[1] |
张海涛,郭笑锴,杨小明,等. 姬塬地区低对比度油层成因机理与流体识别方法[J]. 测井技术,2019,43(5):542–549.
ZHANG Haitao, GUO Xiaokai, YANG Xiaoming, et al. Genesis mechanism and fluid identification of low contrast reservoirs in Jiyuan area[J]. Well Logging Technology, 2019, 43(5): 542–549.
|
[2] |
张峰,罗少成,李震,等. 四川盆地茅口组岩溶缝洞型储层有效性测井评价[J]. 石油钻探技术,2020,48(6):116–122. doi: 10.11911/syztjs.2020140
ZHANG Feng, LUO Shaocheng, LI Zhen, et al. Logging evaluation on the effectiveness of karst fractured-vuggy reservoirs in the Maokou Formation, Sichuan Basin[J]. Petroleum Drilling Techni-ques, 2020, 48(6): 116–122. doi: 10.11911/syztjs.2020140
|
[3] |
张丛秀,郝晋美,刘治恒,等. 基于测录井资料的环西—彭阳地区延安组储层流体性质识别方法研究[J]. 石油钻探技术,2020,48(5):111–119. doi: 10.11911/syztjs.2020079
ZHANG Congxiu, HAO Jinmei, LIU Zhiheng, et al. A study on the logging-based identification method for reservoir fluid properties of the Yan’an Formation in the Huanxi-Pengyang[J]. Petroleum Dril-ling Techniques, 2020, 48(5): 111–119. doi: 10.11911/syztjs.2020079
|
[4] |
陈四平,谭判,石文睿,等. 涪陵页岩气优质储层测井综合评价方法[J]. 石油钻探技术,2020,48(4):131–138. doi: 10.11911/syztjs.2020091
CHEN Siping, TAN Pan, SHI Wenrui, et al. A comprehensive logging evaluation method for high quality shale gas reservoirs in Fuling[J]. Petroleum Drilling Techniques, 2020, 48(4): 131–138. doi: 10.11911/syztjs.2020091
|
[5] |
李义,周全,张伟. 陆丰凹陷文昌组储层流体性质识别方法研究[J]. 海洋石油,2020,40(1):70–73.
LI Yi, ZHOU Quan, ZHANG Wei. Study on identification method of reservoir fluid properties of Wenchang Formation in Lufeng Sunken[J]. Offshore Oil, 2020, 40(1): 70–73.
|
[6] |
张艺,李道清,仇鹏,等. 基于岩性分类的火山岩储层流体识别方法:以克拉美丽气田石炭系火山岩为例[J]. 西安石油大学学报(自然科学版),2020,35(6):22–29.
ZHANG Yi, LI Daoqing, QIU Peng, et al. Study on fluid identification method of volcanic reservoir based on lithology classification: a case study of carboniferous volcanic rocks in Kelamei Gasfield[J]. Journal of Xi’an Shiyou University(Natural Science), 2020, 35(6): 22–29.
|
[7] |
王月莲,袁士义,宋新民,等. “无侵线法” 流体识别技术在低渗低电阻率油藏中的应用[J]. 石油勘探与开发,2005,32(3):88–90. doi: 10.3321/j.issn:1000-0747.2005.03.022
WANG Yuelian, YUAN Shiyi, SONG Xinmin, et al. Non-intrusion line method for fluid identification and its application in low permeability and low resistivity reservoirs[J]. Petroleum Exploration & Development, 2005,32(3): 88–90. doi: 10.3321/j.issn:1000-0747.2005.03.022
|
[8] |
孙卫涛,熊繁升,曹宏,等. 致密储层复杂流体模型及其适用性分析[J]. 石油物探,2021,60(1):136–148.
SUN Weitao, XIONG Fansheng, CAO Hong, et al. Analysis of complex fluid model and its applicability in tight reservoirs[J]. Geophysical Prospecting for Petroleum, 2021, 60(1): 136–148.
|
[9] |
WU P Y, JAIN V, KULKARNIET M S, et al. Machine learning-based method for automated well-log processing and interpretation[R]. SEG-2018-2996973, 2018.
|
[10] |
程超, 李培彦, 陈雁, 等. 基于机器学习的储层测井评价研究进展[J/OL]. 地球物理学进展: 1-15. (2021-05-31)[2021-09-06]. http://kns.cnki.net/kcms/detail/11.2982.P.20210529.1525.014.html.
CHENG Chao, LI Peiyan, CHEN Yan, et al. Research progress of reservoir logging evaluation based on machine learning[J/OL]. Progress in Geophysics: 1-15. (2021-05-31)[2021-09-06]. http://kns.cnki.net/kcms/detail/11.2982.P.20210529.1525.014.html.
|
[11] |
孙挺,赵颖,杨进,等. 基于支持向量机的钻井工况实时智能识别方法[J]. 石油钻探技术,2019,47(5):28–33. doi: 10.11911/syztjs.2019033
SUN Ting, ZHAO Ying, YANG Jin, et al. Real-time intelligent identi-fication method under drilling conditions based on support vector machine[J]. Petroleum Drilling Techniques, 2019, 47(5): 28–33. doi: 10.11911/syztjs.2019033
|
[12] |
周雪晴,张占松,朱林奇,等. 基于双向长短期记忆网络的流体高精度识别新方法[J]. 中国石油大学学报(自然科学版),2021,45(1):69–76.
ZHOU Xueqing, ZHANG Zhansong, ZHU Linqi, et al. A new method for high-precision fluid identification in bidirectional long short-term memory network[J]. Journal of China University of Petro-leum(Edition of Natural Science), 2021, 45(1): 69–76.
|
[13] |
张银德,童凯军,郑军,等. 支持向量机方法在低阻油层流体识别中的应用[J]. 石油物探,2008,47(3):306–310, 314. doi: 10.3969/j.issn.1000-1441.2008.03.017
ZHANG Yinde, TONG Kaijun, ZHENG Jun, et al. Application of support vector machine method for identifying fluid in low-resistivity oil layers[J]. Geophysical Prospecting for Petroleum, 2008, 47(3): 306–310, 314. doi: 10.3969/j.issn.1000-1441.2008.03.017
|
[14] |
ONWUCHEKWA C. Application of machine learning ideas to reservoir fluid properties estimation[R]. SPE 193461, 2018.
|
[15] |
王少龙,杨斌,赵倩,等. BP神经网络在复杂储层流体识别中的应用[J]. 石油化工应用,2018,37(7):45–48. doi: 10.3969/j.issn.1673-5285.2018.07.011
WANG Shaolong, YANG Bin, ZHAO Qian, et al. Application of BP neural network in recognition of complex reservoir fluids[J]. Petrochemical Industry Application, 2018, 37(7): 45–48. doi: 10.3969/j.issn.1673-5285.2018.07.011
|
[16] |
周凡, 姜洪福, 王立艳, 等. 基于阵列感应测井的支持向量机流体识别方法[J]. 中国海洋大学学报(自然科学版), 2011, 41(增刊1): 317–323.
ZHOU Fan, JIANG Hongfu, WANG Liyan, et al. Application of array induction logging and support vector machine to fluid identification[J]. Periodical of Ocean University of China, 2011, 41(supplement1): 317–323.
|
[17] |
谭茂金, 白洋, 王谦, 等. 当非常规油气遇到人工智能: 多源数据驱动下非常规油气测井智能解释方法研究进展[C]//2019年油气地球物理学术年会论文集, 南京: 中国地球物理学会油气地球物理专业委员会, 2019: 615.
TAN Maojin, BAI Yang, WANG Qian, et al. When unconventional oil and gas encounter artificial intelligence-the research progress of intelligent interpretation methods for unconventional oil and gas logging driven by multi-source data[C]//Proceedings of 2019 Annual Academic Conference on Oil and Gas Geophysics, Nanjing: Professional Committee of Oil and Gas Geophysics of China Geophysical Society, 2019: 615
|
[18] |
张晓龙,任芳. 支持向量机与AdaBoost的结合算法研究[J]. 计算机应用研究,2009,26(1):77–78.
ZHANG Xiaolong, REN Fang. Study on combinability of SVM and AdaBoost algorithm[J]. Applicaion Research of Computers, 2009, 26(1): 77–78.
|
[19] |
SCHAPIRE R E. The boosting approach to machine learning: an overview[M]//DENISON D D, HANSEN M H, HOLMES C C, et al. Nonlinear estimation and classification. New York: Springer, 2002: 149-171.
|
[20] |
曹莹,苗启广,刘家辰,等. AdaBoost算法研究进展与展望[J]. 自动化学报,2013,39(6):745–758.
CAO Ying, MIAO Qiguang, LIU Jiachen, et al. Advance and prospects of AdaBoost algorithm[J]. Acta Automatica Sinica, 2013, 39(6): 745–758.
|
[21] |
杨笑,王志章,周子勇,等. 基于参数优化AdaBoost算法的酸性火山岩岩性分类[J]. 石油学报,2019,40(4):457–467.
YANG Xiao, WANG Zhizhang, ZHOU Ziyong, et al. Lithology classification of acidic volcanic rocks based on parameter-optimized AdaBoost algorithm[J]. Acta Petrolei Sinica, 2019, 40(4): 457–467.
|
[22] |
张郁哲,程时清,史文洋,等. 多层合采井产量劈分方法及在大牛地气田的应用[J]. 石油钻采工艺,2019,41(5):624–629.
ZHANG Yuzhe, CHENG Shiqing, SHI Wenyang, et al. Commingled producing well production split method and its application in Daniudi Gasfield[J]. Oil Drilling & Production Technology, 2019, 41(5): 624–629.
|
[23] |
郭振华,赵彦超. 大牛地气田致密砂岩气藏低阻气层成因分析[J]. 石油天然气学报,2007,29(3):246–249, 512-513. doi: 10.3969/j.issn.1000-9752.2007.03.027
GUO Zhenhua, ZHAO Yanchao. Genetic analysis on low-resistivity gas zones of tight sandstone reservoirs in Daniudi Gas Field[J]. Journal of Oil and Gas Technology, 2007, 29(3): 246–249, 512-513. doi: 10.3969/j.issn.1000-9752.2007.03.027
|