WU Xueting, ZOU Yun, LU Yanying, ZHAO Zengyi, ZHOU Chenghan. The Prediction of Wellbore Temperature and the Determination of Thief Zone Position under Conditions of Lost Circulation[J]. Petroleum Drilling Techniques, 2019, 47(6): 54-59. DOI: 10.11911/syztjs.2019119
Citation: WU Xueting, ZOU Yun, LU Yanying, ZHAO Zengyi, ZHOU Chenghan. The Prediction of Wellbore Temperature and the Determination of Thief Zone Position under Conditions of Lost Circulation[J]. Petroleum Drilling Techniques, 2019, 47(6): 54-59. DOI: 10.11911/syztjs.2019119

The Prediction of Wellbore Temperature and the Determination of Thief Zone Position under Conditions of Lost Circulation

More Information
  • Received Date: April 22, 2019
  • Revised Date: September 29, 2019
  • Available Online: October 20, 2019
  • In view of the fact of low accuracy of wellbore fluid temperature prediction and difficulty in identifying the position of the thief zone when the circulation loss occurs, a model of wellbore temperature field under lost circulation was established based on the analysis of wellbore heat transfer laws by comprehensively considering the influences of heat source items and variable mass flow on wellbore temperature. The reliability of this model was verified by field measured data, and the influences of the leakage rate and the thief zone on the temperature distribution laws of wellbore were analyzed. The numerical simulation results show that when compared with the model from Chen, the outputs from the new model are closer to the measured temperature, with the average relative error of 2.1%. The leakage rate imposes much greater influence on the bottom hole fluid temperature than the wellhead fluid temperature. In addition, when the leakage occurs in the upper open hole section, there is an inflection point on the temperature gradient distribution curve of the annulus fluids, and the position of the point is consistent with that of thief zone. The research results suggest that the model can accurately predict wellbore temperature distribution under lost circulation conditions, and the position of the thief zone can be determined in the field according to the annulus temperature gradient distribution curve.

  • [1]
    马光长,吉永忠,熊焰. 川渝地区井漏现状及治理对策[J]. 钻采工艺, 2006, 29(2): 25–27. doi: 10.3969/j.issn.1006-768X.2006.02.009

    MA Guangchang, JI Yongzhong, XIONG Yan. Present state and treatment measures of lost circulation in Sichuan and Chongqing Area[J]. Drilling & Production Technology, 2006, 29(2): 25–27. doi: 10.3969/j.issn.1006-768X.2006.02.009
    [2]
    刘振东,明玉广,王传富,等. 钻井液漏失位置测量仪的研制及试验[J]. 石油钻探技术, 2017, 45(6): 55–59.

    LIU Zhendong, MING Yuguang, WANG Chuanfu, et al. The developmment and testing of lost circulation position detector[J]. Petroleum Drilling Techniques, 2017, 45(6): 55–59.
    [3]
    隋秀香,李相方,崔松,等. 温度式钻井漏层位置测量仪的研制[J]. 石油钻探技术, 2009, 37(3): 78–80. doi: 10.3969/j.issn.1001-0890.2009.03.019

    SUI Xiuxiang, LI Xiangfang, CUI Song, et al. A leaking position detection instrument[J]. Petroleum Drilling Techniques, 2009, 37(3): 78–80. doi: 10.3969/j.issn.1001-0890.2009.03.019
    [4]
    郑有成,李向碧,邓传光,等. 川东北地区恶性井漏处理技术探索[J]. 天然气工业, 2003, 23(6): 84–85. doi: 10.3321/j.issn:1000-0976.2003.06.023

    ZHENG Youcheng, LI Xiangbi, DENG Chuanguang, et al. Techniques of treating seriously lost circulations in Northeast Sichuan[J]. Natural Gas Industry, 2003, 23(6): 84–85. doi: 10.3321/j.issn:1000-0976.2003.06.023
    [5]
    黄远俊,袁勇,刘源德. 中原油田完井井漏的处理技术[J]. 钻井液与完井液, 2003, 20(4): 64–65, 73.

    HUANG Yuanjun, YUAN Yong, LIU Yuande. Treatment of circulation loss in well completion[J]. Drilling Fluid & Completion Fluid, 2003, 20(4): 64–65, 73.
    [6]
    王江帅,李军,柳贡慧,等. 基于井下分离的深水双梯度钻井参数优化[J]. 石油勘探与开发, 2019, 46(4): 776–781.

    WANG Jiangshuai, LI Jun, LIU Gonghui, et al. Parameters optimization in deepwater dual-gradient drilling based on downhole separation[J]. Petroleum Exploration and Development, 2019, 46(4): 776–781.
    [7]
    潘军,李大奇. 顺北油田二叠系火成岩防漏堵漏技术[J]. 钻井液与完井液, 2018, 35(3): 42–47.

    PAN Jun, LI Daqi. Technology of preventing and controlling mud losses into the permian igneous rocks in Shunbei Oilfield[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 42–47.
    [8]
    王广财,王丰年,张军,等. 凝胶复合防漏堵漏技术在火焰山腹地表层的应用[J]. 钻井液与完井液, 2017, 34(3): 49–53.

    WANG Guangcai, WANG Fengnian, ZHANG Jun, et al. Application of a composite gel lost circulation material in the top section of wells drilled in the central region of the mountain of fire[J]. Drilling Fluid & Completion Fluid, 2017, 34(3): 49–53.
    [9]
    林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术, 2019, 47(3): 113–120.

    LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113–120.
    [10]
    曾义金,李大奇,杨春和. 裂缝性地层防漏堵漏力学机制研究[J]. 岩石力学与工程学报, 2016, 35(10): 2054–2061.

    ZENG Yijin, LI Daqi, YANG Chunhe. Leakage prevention and control in fractured formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2054–2061.
    [11]
    何世明,尹成,徐壁华,等. 确定注水泥与钻井过程中井内循环温度的数学模型[J]. 天然气工业, 2002, 22(1): 42–45. doi: 10.3321/j.issn:1000-0976.2002.01.012

    HE Shiming, YIN Cheng, XU Bihua, et al. Mathematical model of determining borehole circulating temperatures in cementing and drilling processes[J]. Natural Gas Industry, 2002, 22(1): 42–45. doi: 10.3321/j.issn:1000-0976.2002.01.012
    [12]
    KABIR C S, HASAN A R, KOUBA G E, et al. Determining circulation fluid temperature in drilling, workover, and well control operations[J]. SPE Drilling & Completion, 1996, 11(2): 74–79.
    [13]
    易灿,闫振来,郭磊. 井下循环温度及其影响因素的数值模拟研究[J]. 石油钻探技术, 2007, 35(6): 47–49. doi: 10.3969/j.issn.1001-0890.2007.06.013

    YI Can, YAN Zhenlai, GUO Lei. Numerical simulation of circulating temperature and it's impacting parameters[J]. Petroleum Drilling Techniques, 2007, 35(6): 47–49. doi: 10.3969/j.issn.1001-0890.2007.06.013
    [14]
    杨谋,孟英峰,李皋,等. 钻井全过程井筒–地层瞬态传热模型[J]. 石油学报, 2013, 34(2): 366–371. doi: 10.7623/syxb201302021

    YANG Mou, MENG Yingfeng, LI Gao, et al. A transient heat transfer model of wellbore and formation during the whole drilling process[J]. Acta Petrolei Sinica, 2013, 34(2): 366–371. doi: 10.7623/syxb201302021
    [15]
    何淼,柳贡慧,李军, 等. 多相流全瞬态温度压力场耦合模型求解及分析[J]. 石油钻探技术, 2015, 43(2): 25–32.

    HE Miao, LIU Gonghui, LI Jun, et al. Solution and analysis of fully transient temperature and pressure coupling model for multiphase flow[J]. Petroleum Drilling Techniques, 2015, 43(2): 25–32.
    [16]
    王江帅,李军,柳贡慧,等. 循环钻井过程中井筒温度场新模型[J]. 断块油气田, 2018, 25(2): 240–243.

    WANG Jiangshuai, LI Jun, LIU Gonghui, et al. New model of wellbore temperature field during drilling process[J]. Fault-Block Oil & Gas Field, 2018, 25(2): 240–243.
    [17]
    石小磊,高德利,王宴滨. 考虑耦合效应的高温高压气井井筒温压分布预测分析[J]. 石油钻采工艺, 2018, 40(5): 541–546.

    SHI Xiaolei, GAO Deli, WANG Yanbin. Predictive analysis on borehole temperature and pressure of HTHP gas wells considering coupling effect[J]. Oil Drilling & Production Technology, 2018, 40(5): 541–546.
    [18]
    沈园园. 南堡潜山高温油气藏井下循环温度的数值模拟[J]. 断块油气田, 2017, 24(4): 570–573.

    SHEN Yuanyuan. Numerical simulation of wellbore temperature calculation for Nanpu buried-hill[J]. Fault-Block Oil & Gas Field, 2017, 24(4): 570–573.
    [19]
    CHEN Yuanhang, YU Mengjiao, MISKA S, et al. Fluid flow and heat transfer modeling in the event of lost circulation and its application in locating loss zones[J]. Journal of Petroleum Science and Engineering, 2017, 148: 1–9. doi: 10.1016/j.petrol.2016.08.030
    [20]
    LI Mengbo, LIU Gonghui, LI Jun, et al. Thermal performance analysis of drilling horizontal wells in high temperature formations[J]. Applied Thermal Engineering, 2015, 78: 217–227. doi: 10.1016/j.applthermaleng.2014.12.055
    [21]
    HOLMES C S, SWIFT S C. Calculation of circulating mud temperatures[J]. Journal of Petroleum Technology, 1970, 22(6): 670–674. doi: 10.2118/2318-PA
  • Related Articles

    [1]ZHANG Heng, YUAN Guangjie, NI Hongjian, YANG Henglin, FU Li, WANG Yuan. Experimental Study on Suppression of Stick-slip Vibration of PDC Bit by Composite Impact Load[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025007
    [2]YAO Zhenhe, GUAN Lijun, WANG Xiannan, XIA Zhujun, WANG Yong. Development and Application of Visual Cable Sticking Warning System[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025042
    [3]DI Qinfeng, YOU Mingming, LI Tianxin, ZHOU Xing, YANG Heyuan, WANG Wenchang. Simulation and Analysis of Dynamic Characteristics of Drilling String in Extra-Deep Wells[J]. Petroleum Drilling Techniques, 2024, 52(2): 108-117. DOI: 10.11911/syztjs.2024029
    [4]WANG Wei, LIU Gonghui, LI Jun, ZHA Chunqing, LIAN Wei, XIA Mingli. Analysis and Testing of the Working Characteristics of a Pulsating Torsional Impact Drilling Tool[J]. Petroleum Drilling Techniques, 2022, 50(5): 63-69. DOI: 10.11911/syztjs.2021101
    [5]LIU Shubin, NI Hongjian, ZHANG Heng. Development and Applications of a Compound Axial and Torsional Impact Drilling Tool[J]. Petroleum Drilling Techniques, 2020, 48(5): 69-76. DOI: 10.11911/syztjs.2020072
    [6]TENG Xueqing, DI Qinfeng, LI Ning, CHEN Feng, ZHOU Bo, WANG Min. Measurement and Analysis of Stick-Slip Characteristics of Drill String in Ultra-Deep Wells[J]. Petroleum Drilling Techniques, 2017, 45(2): 32-39. DOI: 10.11911/syztjs.201702006
    [7]Han Feng, Gu Lei, Cui Xiaojie, Li Fuping, Ruan Chenliang, Feng Bin. Mechanical Model for Setting the Liner Hanger with Embedded Slips[J]. Petroleum Drilling Techniques, 2015, 43(6): 103-107. DOI: 10.11911/syztjs.201506019
    [8]Zhang Jinkai, Li Gensheng, Huang Zhongwei, Tian Shouceng, Shi Huaizhong. Behavior of Herschel-Bulkely Fluid Flow in Whirl Drill String[J]. Petroleum Drilling Techniques, 2013, 41(5): 82-88. DOI: 10.3969/j.issn.1001-0890.2013.05.016
  • Cited by

    Periodical cited type(2)

    1. 任邵康 ,汪敏. 水平井井眼清洁定量化监测技术探讨. 数字技术与应用. 2025(01): 117-119 .
    2. 杨前亮,黄洪林,罗鸣,吴艳辉,李文拓,肖平. 基于机械钻速的地层孔隙压力随钻监测方法. 石油钻采工艺. 2023(05): 548-554 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1286) PDF downloads (94) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return