TENG Xueqing, DI Qinfeng, LI Ning, CHEN Feng, ZHOU Bo, WANG Min. Measurement and Analysis of Stick-Slip Characteristics of Drill String in Ultra-Deep Wells[J]. Petroleum Drilling Techniques, 2017, 45(2): 32-39. DOI: 10.11911/syztjs.201702006
Citation: TENG Xueqing, DI Qinfeng, LI Ning, CHEN Feng, ZHOU Bo, WANG Min. Measurement and Analysis of Stick-Slip Characteristics of Drill String in Ultra-Deep Wells[J]. Petroleum Drilling Techniques, 2017, 45(2): 32-39. DOI: 10.11911/syztjs.201702006

Measurement and Analysis of Stick-Slip Characteristics of Drill String in Ultra-Deep Wells

More Information
  • Received Date: August 23, 2016
  • Revised Date: March 15, 2017
  • Complicated stick-slip vibration might induce drilling tool failure and negatively impact drilling efficiency. Much research has been conducted on the mechanisms that cause the generation of such a vibration but they have not been able to arrive at a confirmed conclusion. In this paper, we present a study in which we used ESM drill string vibration measuring devices and tri-axial accelerations of a downhole drill string in an ultra-deep well.Through the analysis of tri-axial acceleration, the stick-slip vibration features of the drill string were reviewed. Research results showed that massive stick-slip vibration occurred in the concerned interval with a stick-slip frequency of 0.11 Hz, period of 9.0 s and a total stick time up to 4.0 s. During the slip stage, the maximum rotation speed of the downhole drill strings reached 330.0 r/min, approximately 2.75 times higher than that on the ground surface; Generally speaking, the stick-slip vibration was in accordance with fluctuations in surface torque. In other words, features of surface torque might be used for preliminary determination of stick-slip vibration of drill string in the borehole. Analysis of frequency show that stick-slip frequencies of radial acceleration were in accordance with the highest amplitude in energy during stick-slip. There were also horizontal resonance frequency and external exciting frequency generated by drilling string contact with the sidewall. But stick-slip frequencies of axial vibrations corresponded well with minor energy amplitudes. In conclusion, the stick-slip of the drill string may be characterized by torsional vibration. At the same time, there were intensive horizontal vibration and relatively weak axial vibrations. This study can provide as reference in stick-slip vibration characterization and removal strategy for eliminating it in ultra-deep wells drilling.
  • [1]
    牟海维,王瑛,韩春杰.钻柱的粘滑振动规律分析[J].石油机械,2011,39(3):67-69,81. MU Haiwei,WANG Ying,HAN Chunjie.Analysis of stick-slip vibration of drillstring[J].China Petroleum Machinery,2011,39(3):67-69,81.
    [2]
    LEINE R I,van CAMPEN D H,KEULTJES W J G.Stick-slip whirl interaction in drillstring dynamics[J].Journal of Vibration and Acoustics,2002,124(2):209-220.
    [3]
    ZHU Xiaohua,TANG Liping,YANG Qiming.A literature review of approaches for stick-slip vibration suppression in oilwell drillstring[J].Advances in Mechanical Engineering,2014,6:1-17.
    [4]
    MIHAJLOVIC N,van VEGGEl A A,van de WOUW N.Friction-induced torsional vibrations in an experimental drill-string system:proceedings of the 23rd IASTED International Conference on Modelling,Identification and Control,Grindelwald,Switzerland,February 23-25,2004[C].
    [5]
    吕苗荣,沈诗刚.钻柱黏滑振动动力学研究[J].西南石油大学学报(自然科学版),2014,36(6):150-159. LYU Miaorong,SHEN Shigang.The simulation and analysis of drillstring stick-slip vibration[J].Journal of Southwest Petroleum University(Science Technology Edition),2014,36(6):150-159.
    [6]
    杨福生.随机信号分析[M].北京:清华大学出版社,1990:151-164. YANG Fusheng.Random signal analysis[M].Beijing:Tsinghua University Press,1990:151-164.
    [7]
    高岩,陈亚西,郭学增.钻柱振动信号采集系统及谱分析[J].录井技术,1998,9(3):44-51. GAO Yan,CHEN Yaxi,GUO Xuezeng.The acquisition system for drill string vibration signals and the spectrum analysis[J].Mud Logging Engineering,1998,9(3):44-51.
    [8]
    LAI S W,WOOD M J,EDDY A J,et al.Stick-slip detection and friction factor testing using surface-based torque and tension measurements[R].SPE 170624,2014.
    [9]
    刘伟,周英操,王瑛,等.井下振动测量、分析原理研究[J].石油钻采工艺,2012,34(1):14-18. LIU Wei,ZHOU Yingcao,WANG Ying,et al.Study on downhole vibration measurement and analysis theory[J].Oil Drilling Production Technology,2012,34(1):14-18.
    [10]
    黄根炉,韩志勇.大位移井钻柱粘滑振动机理分析及减振研究[J].石油钻探技术,2001,29(2):4-6. HUANG Genlu,HAN Zhiyong.Mechanism analysis on torsional stick-slip vibration of drillstring in extended reach well and some ways to its suppression[J].Petroleum Drilling Techniques,2001,29(2):4-6.
    [11]
    ASHLEY D K,McNARY X M,TOMLINSON J C.Extending BHA Life with multi-axis vibration measurements[R].SPE 67696,2001.
    [12]
    LEDGERWOOD L W,HOFFMANN O J,JAIN J R,et al.Downhole vibration measurement,monitoring,and modeling reveal stick/slip as a primary cause of PDC-bit damage in today[R].SPE 134488,2010.
    [13]
    GREENBERG J.Weatherford sensors track vibration to increase ROP,temperature changes for early kick detection[J].Drilling Contractor,2008,64(2):46-47.
    [14]
    ZANNONI S A,CHEATHAM C A,CHEN C-K D,et al.Development and field testing of a new downhole MWD drillstring dynamics sensor[R].SPE 26341,1993.
    [15]
    MARTIN E C,WASSELL M E.Laboratory testing of an active drilling vibration monitoring control system:the AADE 2005 National Technical Conference and Exhibition,Houston,Texas,April 5-7,2005[C].
    [16]
    郭厚明,行志刚,荆双喜.无量纲参数在矿用低速重载齿轮故障诊断中的应用[J].煤炭科学技术,2006,34(8):28-31. GUO Houming,XING Zhigang,JING Shuangxi.Dimensionless parameters applied to fault diagnosis of mine low speed heavy loaded gear[J].Coal Science and Technology,2006,34(8):28-31.
  • Related Articles

    [1]QU Hao, CHEN Feng, CHEN Jialei, ZHANG Hao, MING Chuanzhong, LI Jirong. Three-Dimensional Mechanical Characteristics of Drill Collar Joints under Downhole Equivalent Impact Torque in Extra-Deep Well[J]. Petroleum Drilling Techniques, 2024, 52(2): 211-217. DOI: 10.11911/syztjs.2024044
    [2]SUN Xiaofang, LIU Feng, ZHANG Conghui, SUN Zhifeng, QIU Ao, GUO Shangjing. Emission Frequency Optimization of Borehole Imaging for Dipole Acoustic Remote Detection of Slow Formations[J]. Petroleum Drilling Techniques, 2023, 51(1): 98-105. DOI: 10.11911/syztjs.2023017
    [3]LU Zongyu, ZHENG Junsheng, JIANG Zhenxin, ZHAO Fei. An Experimental Study on Rock Breaking Efficiency with Ultrasonic High-Frequency Rotary-Percussive Drilling Technology[J]. Petroleum Drilling Techniques, 2021, 49(2): 20-25. DOI: 10.11911/syztjs.2020126
    [4]WANG Zhengxu, GAO Deli. Temperature Distribution of Heavy Oil Reservoirs under High Frequency Electromagnetic Heating and an Analysis of Its Influencing Factors[J]. Petroleum Drilling Techniques, 2020, 48(1): 90-97. DOI: 10.11911/syztjs.2019128
    [5]HU Yongjian, WANG Lan. Modeling High-Frequency Magnetic Coupling Wired Drill Pipe Channel Based on Linear Simulation[J]. Petroleum Drilling Techniques, 2019, 47(2): 120-126. DOI: 10.11911/syztjs.2019050
    [6]Zhang Huizeng, Guan Zhichuan, Ke Ke, Dou Yuling. The Impact of Lateral Vibration on Friction of Drill String in Horizontal Wells[J]. Petroleum Drilling Techniques, 2015, 43(3): 61-64. DOI: 10.11911/syztjs.201503012
    [7]Ni Weining, Liu Jianhua, Zhang Wei, Wu Chunping, Wu Fei. The Control Technology of Downhole Tools Based on Radio Frequency Identification[J]. Petroleum Drilling Techniques, 2014, 42(6): 102-105. DOI: 10.11911/syztjs.201406020
    [8]Li Siqi, Yan Tie, Wang Xijun, Qiao Yong, Yang Min. The Micro-Vibration Equation of Rock and Its Analysis Basing on the Principle of Least Action[J]. Petroleum Drilling Techniques, 2014, 42(3): 66-70. DOI: 10.3969/j.issn.1001-0890.2014.03.013
    [9]Li Wei, Yan Tie, Zhang Zhichao, Li Lianqun. Rock Response Mechanism and Rock Breaking Test Analysis for Impact of High Frequency Vibration Drilling Tool[J]. Petroleum Drilling Techniques, 2013, 41(6): 25-28. DOI: 10.3969/j.issn.1001-0890.2013.06.005
  • Cited by

    Periodical cited type(5)

    1. 狄勤丰,尤明铭,李田心,周星,杨赫源,王文昌. 特深井钻柱动力学特性模拟与分析. 石油钻探技术. 2024(02): 108-117 . 本站查看
    2. 赵一超,宋朝阳,刘志强,王强,荆国业,孙建荣,王媛. 基于力-构-能模型的钻井法凿井钻进参数设计思路与方法. 建井技术. 2024(03): 1-9+43 .
    3. 祝兆鹏,朱林,宋先知,李永钊,张仕民,柯迪丽娅·帕力哈提,张诚恺,王超尘. 机理约束下钻井机械钻速智能预测泛化方法. 天然气工业. 2024(09): 179-189 .
    4. 王果,许博越. 理论模型与机器学习融合的PDC钻头钻速预测方法. 石油钻探技术. 2024(05): 117-123 . 本站查看
    5. 余昕泽. 赵集盐矿钻井提速提质技术. 复杂油气藏. 2024(04): 480-485 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (9622) PDF downloads (11070) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return