WANG Wei, LIU Gonghui, LI Jun, et al. Analysis and testing of the working characteristics of a thepulsating torsional impact drilling tool [J]. Petroleum Drilling Techniques,2022, 50(5):63-69. DOI: 10.11911/syztjs.2021101
Citation: WANG Wei, LIU Gonghui, LI Jun, et al. Analysis and testing of the working characteristics of a thepulsating torsional impact drilling tool [J]. Petroleum Drilling Techniques,2022, 50(5):63-69. DOI: 10.11911/syztjs.2021101

Analysis and Testing of the Working Characteristics of a Pulsating Torsional Impact Drilling Tool

More Information
  • Received Date: December 09, 2021
  • Revised Date: May 14, 2022
  • Available Online: April 26, 2022
  • A pulsating torsional impact drilling tool was designed to provide a polycrystalline diamond compact (PDC) bit with a circumferential impact load to suppress the stick-slip vibration of the bit when it drills into hard formations. First, the structural design of the drilling tool was introduced, and its working principle was analyzed. Then, on this basis, mathematical models were established for calculating its impact energy in vertical wells and circumferential torque. Finally, the working characteristics of the drilling tool were analyzed. The analysis results showed that the circumferential torque of the pulsating torsional impact drilling tool increased with the increase in flow rate and decreased with the increase in the diameter of the throttle nozzle. Its impact energy in vertical wells became higher with the increase in the torque and rotation of the drill string; however it declined as the weight on bit (WOB) increased. The performance of the pulsating torsional impact drilling tool prototype was explored through laboratory tests. The test results were positive and indicated that the drilling tool could achieve high-frequency torsional impact, and its operating frequency, circumferential cavity pressure difference, and circumferential torque were all enhanced with the increase in flow rate. The research and test results demonstrate that the pulsating torsional impact drilling tool has an acceptable structural design, which can provide periodic torsional impact loads for PDC bits and suppress the stick-slip vibration.

  • [1]
    马凤清. 哈山3井火成岩地层快速钻井技术[J]. 石油钻探技术,2014,42(2):112–116.

    MA Fengqing. Fast drilling technique through igneous rocks in well Hashan 3[J]. Petroleum Drilling Techniques, 2014, 42(2): 112–116.
    [2]
    滕学清,狄勤丰,李宁,等. 超深井钻柱粘滑振动特征的测量与分析[J]. 石油钻探技术,2017,45(2):32–39.

    TENG Xueqing, DI Qinfeng, LI Ning, et al. Measurement and analysis of stick-slip characteristics of drill string in ultra-deep wells[J]. Petroleum Drilling Techniques, 2017, 45(2): 32–39.
    [3]
    朱全塔,邹宗明,黄兵,等. 导致钻铤失效的井下振动分析及其解决方案[J]. 天然气工业,2016,36(12):80–86. doi: 10.3787/j.issn.1000-0976.2016.12.011

    ZHU Quanta, ZOU Zongming, HUANG Bing, et al. Downhole vibration causing a drill collar failure and solutions[J]. Natural Gas Industry, 2016, 36(12): 80–86. doi: 10.3787/j.issn.1000-0976.2016.12.011
    [4]
    KOVALYSHEN Y. Understanding root cause of stick-slip vibrations in deep drilling with drag bits[J]. International Journal of Non-Linear Mechanics, 2014, 67(12): 331–341.
    [5]
    TUCKER W R, WANG C. On the effective control of torsional vibrations in drilling systems[J]. Journal of Sound and Vibration, 1999, 224(1): 101–122. doi: 10.1006/jsvi.1999.2172
    [6]
    王宏伟,韩飞,纪友哲,等. PDC 钻头粘滑控制技术现状及发展趋势[J]. 石油矿场机械,2016,45(7):104–107. doi: 10.3969/j.issn.1001-3482.2016.07.024

    WANG Hongwei, HAN Fei, JI Youzhe, et al. Status and development tendency of stick-slip controlling technology for PDC bit[J]. Oil Field Equipment, 2016, 45(7): 104–107. doi: 10.3969/j.issn.1001-3482.2016.07.024
    [7]
    李美求,李嘉文,李宁,等. 周向冲击扭矩作用下PDC钻头的黏滑振动分析[J]. 石油钻采工艺,2018,40(3):287–292.

    LI Meiqiu, LI Jiawen, LI Ning, et al. Analysis on the stick-slip vibration of PDC bit under the effect of circumferential torque impact[J]. Oil Drilling & Production Technology, 2018, 40(3): 287–292.
    [8]
    汪伟,柳贡慧,李军,等. 扭转冲击钻井工具的工作特性[J]. 断块油气田,2019,26(3):385–388.

    WANG Wei, LIU Gonghui, LI Jun, et al. Operating characteristics of torsional impact drilling tool[J]. Fault-Block Oil & Gas Field, 2019, 26(3): 385–388.
    [9]
    李思琪,毕福庆,李玮,等. 扭转冲击钻井稳态钻进动力学特性及现场应用[J]. 中国石油大学学报(自然科学版),2019,43(2):97–104.

    LI Siqi, BI Fuqing, LI Wei, et al. Dynamic characteristics of steady torsional impact drilling and its field application[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(2): 97–104.
    [10]
    席岩,夏铭莉,孙念,等. 扭转冲击参数对PDC 钻头单齿破岩效率的影响[J]. 石油钻采工艺,2021,43(5):574–579.

    XI Yan, XIA Mingli, SUN Nian, et al. Influence of torsion impact parameters on single-tooth rock breaking efficiency of PDC bit[J]. Oil Drilling & Production Technology, 2021, 43(5): 574–579.
    [11]
    田家林,唐磊,刘强,等. 恒扭提速钻具动力学特性研究与试验分析[J]. 中国海上油气,2022,34(4):203–212.

    TIAN Jialin, TANG Lei, LIU Qiang, et al. Dynamics characteristics study and experiment of constant torque speed-up drilling tool[J]. China Offshore Oil and Gas, 2022, 34(4): 203–212.
    [12]
    刘书斌,倪红坚,张恒. 轴扭复合冲击工具的研制与应用[J]. 石油钻探技术,2021,48(5):69–76.

    LIU Shubin, NI Hongjian, ZHANG Heng. Development and applications of a compound axial and torsional impact drilling tool[J]. Petroleum Drilling techniques, 2021, 48(5): 69–76.
    [13]
    陈杰,牟小军,李汉兴,等. 旋冲振荡钻井提速工具的研制与应用[J]. 断块油气田,2020,27(3):386–389.

    CHEN Jie,MOU Xiaojun,LI Hanxing,et al. Development and application of rotary-percussive and oscillatory drilling tool[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 386–389.
    [14]
    李玮,何选蓬,闫铁,等. 近钻头扭转冲击器破岩机理及应用[J]. 石油钻采工艺,2014,36(5):1–4.

    LI Wei, HE Xuanpeng, YAN Tie, et al. Rock fragmentation mechanism and application of near-bit torsion impacter[J]. Oil Drilling & Production Technology, 2014, 36(5): 1–4.
    [15]
    DEEN A, WEDEL R, NAYAN A, et al. Application of a torsional impact hammer to improve drilling efficiency[R]. SPE 147193, 2011.
    [16]
    王四一,赵江鹏,赵建国. 扭力冲击器在煤矿井下硬岩钻进中的应用研究[J]. 煤矿机械,2018,39(10):139–141.

    WANG Siyi, ZHAO Jiangpeng, ZHAO Jianguo. Application research on torque impactor applications on hard rock drilling underground coal mine[J]. Coal Mine Machinery, 2018, 39(10): 139–141.
    [17]
    李宁,周小君,周波,等. 塔里木油田HLHT区块超深井钻井提速配套技术[J]. 石油钻探技术,2017,45(2):10–14.

    LI Ning, ZHOU Xiaojun, ZHOU Bo, et al. Technologies for fast drilling ultra-deep wells in the HLHT block, Tarim oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 10–14.
    [18]
    张海山,葛俊瑞,杨进,等. 扭力冲击器在海上深部地层的提速效果评价[J]. 断块油气田,2014,21(2):249–251.

    ZHANG Haishan, GE Junrui, YANG Jin, et al. Effect evaluation of torsion impactor for increasing ROP in offshore deep formation[J]. Fault-Block Oil & Gas Field, 2014, 21(2): 249–251.
    [19]
    玄令超, 管志川, 刘永旺, 等. 射流式扭转冲击钻井工具: CN103774983A[P]. 2014-05-07.

    XUAN Lingchao, GUAN Zhichuan, LIU Yongwang, et al. Jet torsion percussion drilling tool: CN103774983A[P]. 2014-05-07.
    [20]
    祝效华, 石昌帅, 汤历平. 一种用于硬地层的涡轮式扭转冲击钻具: CN201554363U[P]. 2010-08-18.

    ZHU Xiaohua, SHI Changshuai, TANG Liping. A turbine type torsional percussion drill for hard formation: CN201554363U[P]. 2010-08-18.
    [21]
    查春青, 柳贡慧, 李军. 扭转冲击钻井提速工具: CN108625769B [P]. 2019-06-25.

    ZHA Chunqing, LIU Gonghui, LI Jun. Speed up tool for torsional percussion drilling: CN108625769B[P]. 2019-06 -25.
    [22]
    韩飞,罗淮东,张全立,等. 扭力冲击器设计与仿真分析[J]. 石油机械,2019,47(3):19–23.

    HAN Fei, LUO Huaidong, ZHANG Quanli, et al. Design and simulation analysis of torque thruster[J]. China Petroleum Machinery, 2019, 47(3): 19–23.
    [23]
    赵建军,崔晓杰,赵晨熙,等. 高频液力扭力冲击器设计与试验研究[J]. 石油化工应用,2018,37(2):5–10. doi: 10.3969/j.issn.1673-5285.2018.02.002

    ZHAO Jianjun, CUI Xiaojie, ZHAO Chenxi, et al. Design and experimental research on high frequency hydraulic torsional impac-tor[J]. Petrochemical Industry Application, 2018, 37(2): 5–10. doi: 10.3969/j.issn.1673-5285.2018.02.002
  • Related Articles

    [1]ZHAO Xiuwen, YIN Hu, LI Qian. Architecture of a Digital Twin-Based Adaptive Control System for Drilling Parameters[J]. Petroleum Drilling Techniques, 2024, 52(5): 163-170. DOI: 10.11911/syztjs.2024092
    [2]HUANG Zhe. Development and Field Test of Probe-Type Intelligent Bit Parameter Measurement Device[J]. Petroleum Drilling Techniques, 2024, 52(4): 34-43. DOI: 10.11911/syztjs.2024004
    [3]CHEN Dongfang, QUAN Bing, XIAO Xinqi, ZHANG Guangyu, CHEN Zhihua. Structure Design and Laboratory Testings of an Axial & Torsional Coupling Impactor[J]. Petroleum Drilling Techniques, 2024, 52(1): 78-83. DOI: 10.11911/syztjs.2023104
    [4]YU Chao, ZHANG Yiqun, SONG Xianzhi, WANG Gaosheng, HUANG Haochen. Comprehensive Evaluation and Optimization of Circulating Working Fluids inthe Coaxial Borehole Heat Exchanger Closed-Loop Geothermal System[J]. Petroleum Drilling Techniques, 2021, 49(5): 101-107. DOI: 10.11911/syztjs.2021066
    [5]Hicham Ferroudji, Ahmed Hadjadj, Titus N Ofei, Ahmed Haddad. Effects of the Inner Pipe Rotation and Rheological Parameters on the Axial and Tangential Velocity Profiles and Pressure Drop of Yield Power-Law Fluid in Eccentric Annulus[J]. Petroleum Drilling Techniques, 2020, 48(4): 37-42. DOI: 10.11911/syztjs.2020066
    [6]PANG Wei, LIU Liming, HE Zuqing, HE Tong, WANG Guohua. A Dynamic Prediction Method for Segmental Flow Performance in Horizontal Wells Based on Node Networks[J]. Petroleum Drilling Techniques, 2019, 47(2): 93-98. DOI: 10.11911/syztjs.2019006
    [7]FENG Jin, WEI Jun. The Effect of Cylindrical Valve Structure on the Performance of Turbine-Driven Mud Pulse Generators[J]. Petroleum Drilling Techniques, 2017, 45(3): 62-66. DOI: 10.11911/syztjs.201703011
    [8]Wang Lei, Zhang Hui, Zhou Yuyang, Ke Ke, Zhang Jinshuang, Peng Xing. Optimal Design of Hydraulic Parameters for Conductor Jetting in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2015, 43(2): 19-24. DOI: 10.11911/syztjs.201502004
    [9]Li Hao, Sun Baojiang, Gao Yonghai, Wang Jintang, Wang Ning. Design and Calculation of Hydraulic Parameters for Controlling Mud Cap in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 13-18. DOI: 10.3969/j.issn.1001-0890.2013.03.003
    [10]Jin Yequan, Wang Maolin. PDC Bit Drilling Parameter Optimization Design Integrating Cost and Drilling Rate[J]. Petroleum Drilling Techniques, 2012, 40(5): 13-16. DOI: 10.3969/j.issn.1001-0890.2012.05.003
  • Cited by

    Periodical cited type(10)

    1. 戴文潮,刘奔. 高性能底封拖动分段压裂工具研制及试验. 钻采工艺. 2023(01): 120-125 .
    2. 谢斌,陈超峰,马都都,练章华,史君林. 超深高温高压井尾管悬挂器安全性评价新方法. 天然气工业. 2022(09): 93-101 .
    3. 郭朝辉,李振,罗恒荣. Φ273.1mm无限极循环尾管悬挂器在元坝气田的应用研究. 石油钻探技术. 2021(05): 64-69 . 本站查看
    4. 古青,宋剑鸣,曹博,马淼,蒋立坤,杨旭,冯治锋. 高温高压尾管悬挂器研制与应用. 石油矿场机械. 2021(06): 51-57 .
    5. 高果成. 内嵌卡瓦尾管悬挂器在老井侧钻中的优势综合分析. 钻采工艺. 2020(01): 77-80+12 .
    6. 马开华,谷磊,叶海超. 深层油气勘探开发需求与尾管悬挂器技术进步. 石油钻探技术. 2019(03): 34-40 . 本站查看
    7. 朱晓丽,张金法,魏书雷. 尾管用内嵌式卡瓦坐挂机构承载能力分析. 石油矿场机械. 2018(05): 84-87 .
    8. 马兰荣,达伟,韩峰,张瑞. 高性能尾管悬挂器关键技术. 断块油气田. 2017(06): 859-862 .
    9. 刘珂兵,贾彪,王庆,黄煜鹏. 关于内嵌卡瓦尾管悬挂器的应用探讨. 中国石油和化工标准与质量. 2016(22): 74-75 .
    10. 韩峰,崔晓杰,薛占峰,邓同军. 悬挂器坐挂引起的套管二维屈曲失效形式研究. 中国科技论文. 2016(23): 2696-2699+2710 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (344) PDF downloads (68) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return