LIU Shubin, NI Hongjian, ZHANG Heng. Development and Applications of a Compound Axial and Torsional Impact Drilling Tool[J]. Petroleum Drilling Techniques, 2020, 48(5): 69-76. DOI: 10.11911/syztjs.2020072
Citation: LIU Shubin, NI Hongjian, ZHANG Heng. Development and Applications of a Compound Axial and Torsional Impact Drilling Tool[J]. Petroleum Drilling Techniques, 2020, 48(5): 69-76. DOI: 10.11911/syztjs.2020072

Development and Applications of a Compound Axial and Torsional Impact Drilling Tool

More Information
  • Received Date: November 29, 2019
  • Revised Date: June 09, 2020
  • Available Online: July 13, 2020
  • To improve the rock-breaking efficiency of PDC bits and reduce stick-slip vibration, a compound axial and torsional impact tool was developed. This tool, characterized by a simple structure and the synchronous action of axial and torsional impacts, is used to break rocks. To do so, it used a self-excited oscillation pulse jet as its energy source, and converted axial impact force into compound axial and torsional impacts through helical surface structure. Field applications showed that: compared with conventional drilling tools, the ROP of this compound axial and torsional impact tool was increased by 95.2%–193.8%, and the footage of a single bit was increased by 46.4%–229.2%. Compared with PDM drills, the ROP of this tool was increased by 71.0% while compared with axial impact tools, the ROP of this tool was increased by 66.3%, and the footage of a single bit was increased by 194.0%. Compared with torsional impact tools, the ROP of this tool was increased by 30.2%–46.8%, and the footage of a single bit was increased by 17.2%–191.8%. The research results showed that the developed compound axial and torsional impact tool can improve rock-breaking efficiency and reduce the stick-slip vibration in hard formations. With its remarkable rock-breaking effects and ROP improvement, this tool is worth of application and widespread implementation.
  • [1]
    王德余,李根生,史怀忠,等. 高效破岩新方法进展与应用[J]. 石油机械, 2012, 40(6): 1–6.

    WANG Deyu, LI Gensheng, SHI Huaizhong, et al. Progress of the high-efficiency rock-breaking method[J]. China Petroleum Machi-nery, 2012, 40(6): 1–6.
    [2]
    KHORSHIDIAN H, MOZAFFARI M, BUTT S D. The role of natural vibrations in penetration mechanism of a single PDC cutter[R]. ARMA-2012-402, 2012.
    [3]
    DEEN C A, WEDEL R J, NAYAN A, et al. Application of a torsional impact hammer to improve drilling efficiency[R]. SPE 147193, 2011.
    [4]
    OSTASEVICIUS V, GAIDYS R, RIMKEVICIENE J, et al. An approach based on tool mode control for surface roughness reduction in high-frequency vibration cutting[J]. Journal of Sound and Vibration, 2010, 329(23): 4866–4879. doi: 10.1016/j.jsv.2010.05.028
    [5]
    LI X B, SUMMERS D A, RUPERT G, et al. Experimental investigation on the breakage of hard rock by the PDC cutters with combined action modes[J]. Tunnelling and Underground Space Technology, 2001, 16(2): 107–114. doi: 10.1016/S0886-7798(01)00036-0
    [6]
    WANG Peng, NI Hongjian, WANG Ruihe. A novel vibration drilling tool used for reducing friction and improve the penetration rate of petroleum drilling[J]. Journal of Petroleum Science and Engineering, 2018, 165: 436–443. doi: 10.1016/j.petrol.2018.02.053
    [7]
    祝效华,刘伟吉. 单齿高频扭转冲击切削的破岩及提速机理[J]. 石油学报, 2017, 38(5): 578–586. doi: 10.7623/syxb201705011

    ZHU Xiaohua, LIU Weiji. The rock breaking and ROP rising mechanism for single-tooth high-frequency torsional impact cutting[J]. Acta Petrolei Sinica, 2017, 38(5): 578–586. doi: 10.7623/syxb201705011
    [8]
    柳贡慧,李玉梅,李军,等. 复合冲击破岩钻井新技术[J]. 石油钻探技术, 2016, 44(5): 10–15.

    LIU Gonghui, LI Yumei, LI Jun, et al. New technology with composite percussion drilling and rock breaking[J]. Petroleum Drilling Techniques, 2016, 44(5): 10–15.
    [9]
    POWELL S W, HERRINGTON D, BOTTON B, et al. Fluid hammer increases PDC performance through axial and torsional energy at the bit[R]. SPE 166433, 2013.
    [10]
    LIU Shubin, NI Hongjian, WANG Xueying, et al. Rock-breaking mechanism study of axial and torsional impact hammer and its application in deep wells[R]. SPE 191077, 2018.
    [11]
    倪红坚,韩来聚,马清明,等. 水力脉冲诱发井下振动钻井工具研究[J]. 石油钻采工艺, 2006, 28(2): 15–17, 20. doi: 10.3969/j.issn.1000-7393.2006.02.005

    NI Hongjian, HAN Laiju, MA Qingming, et al. Study on downhole vibration drilling tool induced by hydropulse[J]. Oil Drilling & Production Technology, 2006, 28(2): 15–17, 20. doi: 10.3969/j.issn.1000-7393.2006.02.005
    [12]
    雷鹏,倪红坚,王瑞和,等. 自激振荡式旋冲工具在深井超深井中的试验应用[J]. 石油钻探技术, 2013, 41(6): 40–43. doi: 10.3969/j.issn.1001-0890.2013.06.008

    LEI Peng, NI Hongjian, WANG Ruihe, et al. Field test of self-excited vibration rotary percussion drilling tool in deep and ultra-deep wells[J]. Petroleum Drilling Techniques, 2013, 41(6): 40–43. doi: 10.3969/j.issn.1001-0890.2013.06.008
    [13]
    RICHARD T, DAGRAIN F, POYOL E, et al. Rock strength determination from scratch tests[J]. Engineering Geology, 2012, 147: 91–100.
    [14]
    刘鹏飞.扭转冲击影响PDC钻头粘滑振动的机理研究[D].青岛: 中国石油大学(华东), 2017.

    LIU Pengfei. Study on the influence mechanism of PDC bit stick-slip vibration under torsional impact[D]. Qingdao: China University of Petroleum (East China), 2017.
    [15]
    KYLLINGSTAD A, HALSEY G W. A study of slip/stick motion of the bit[J]. SPE Drilling Engineering, 1988, 3(4): 369–373. doi: 10.2118/16659-PA
    [16]
    熊继有,蒲克勇,周健. 库车坳陷山前构造超深井岩石可钻性研究[J]. 天然气工业, 2009, 29(11): 59–61. doi: 10.3787/j.issn.1000-0976.2009.11.018

    XIONG Jiyou, PU Keyong, ZHOU Jian. Rock drillability investigation for ultra-deep well drilling at thrust structure of Kuqa depression[J]. Natural Gas Industry, 2009, 29(11): 59–61. doi: 10.3787/j.issn.1000-0976.2009.11.018
    [17]
    滕学清,文志明,王克雄,等. 塔中岩石可钻性剖面建立和钻头选型研究[J]. 西部探矿工程, 2010, 22(11): 43–45. doi: 10.3969/j.issn.1004-5716.2010.11.014

    TENG Xueqing, WEN Zhiming, WANG Kexiong, et al. Research on drillability sections of rocks and bit selection in Tazhong Area[J]. West-China Exploration Engineering, 2010, 22(11): 43–45. doi: 10.3969/j.issn.1004-5716.2010.11.014
    [18]
    白萍萍.准噶尔盆地中部区块钻头选型[D].青岛: 中国石油大学(华东), 2014.

    BAI Pingping. Bit selection in the center of Junggar Basin[D]. Qingdao: China University of Petroleum (East China), 2014.
  • Related Articles

    [1]ZHANG Heng, YUAN Guangjie, NI Hongjian, YANG Henglin, FU Li, WANG Yuan. Experimental Study on Suppression of Stick-slip Vibration of PDC Bit by Composite Impact Load[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025007
    [2]PENG Qi, ZHOU Yingcao, ZHOU Bo, LIU Chuanfu, LIU Yu. Development and Field Test of a Non-Planar Cutter PDC Bit with Convex Ridges[J]. Petroleum Drilling Techniques, 2020, 48(2): 49-55. DOI: 10.11911/syztjs.2020035
    [3]TIAN Jingyan, XU Yuchao. Design and Field Application of a Micro-Coring PDC Bit[J]. Petroleum Drilling Techniques, 2019, 47(1): 65-68. DOI: 10.11911/syztjs.2018134
    [4]LIN Siyuan, LI Zhong, HUANG Yi, CHEN Haodong, YANG Yuhao, GAO Jiji. Technique for Enhancing the Rate of Penetration through the Application of a New PDC Bit with Rotary Cutters in Deep Formations in the Wenchang Block[J]. Petroleum Drilling Techniques, 2017, 45(6): 65-69. DOI: 10.11911/syztjs.201706012
    [5]YAN Yan, GUAN Zhichuan, XUAN Lingchao, HU Huaigang, ZHUANG Li. Experimental Study on Rock Breaking Efficiency with a PDC Bit under Conditions of Composite Percussion[J]. Petroleum Drilling Techniques, 2017, 45(6): 24-30. DOI: 10.11911/syztjs.201706005
    [6]Yang Shunhui, Wu Haojie, Niu Chengcheng, Hou Xutian, Jin Junbin. Manufacture and Application of PDC Bit Enhanced by Special Diamond-Impregnated Segment[J]. Petroleum Drilling Techniques, 2014, 42(6): 111-114. DOI: 10.11911/syztjs.201406022
    [7]Li Guangguo, Suo Zhongwei, Wang Jinrong, Zhou Yucang, Gao Changbin. Improve ROP with Hydraulic Percussion Hammer and PDC Bit in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(5): 71-75. DOI: 10.3969/j.issn.1001-0890.2013.05.014
    [8]Yang Yongyin, Niu Sicheng, Xu Xiqiang. Experimental Study of Combined-Jet PDC Bit[J]. Petroleum Drilling Techniques, 2012, 40(5): 100-105. DOI: 10.3969/j.issn.1001-0890.2012.05.022
    [9]Jin Yequan, Wang Maolin. PDC Bit Drilling Parameter Optimization Design Integrating Cost and Drilling Rate[J]. Petroleum Drilling Techniques, 2012, 40(5): 13-16. DOI: 10.3969/j.issn.1001-0890.2012.05.003
    [10]Xiao Guoyi, Hu Daliang, Liao Zhonghui, Wang Xiyong, Li Qunsheng. Parameter Optimization and Selection of PDC Bits for Xujiahe Formation in Western Sichuan[J]. Petroleum Drilling Techniques, 2012, 40(3): 28-32. DOI: 10.3969/j.issn.1001-0890.2012.03.006

Catalog

    Article Metrics

    Article views (908) PDF downloads (149) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return