DUAN Penghui, LEI Xiujie, LAI Angjie, ZHANG Tongwu, KANG Bo. Research and Application of Fixed-Plane Perforating and Fracturing Technologies in Ultra-Low Permeability Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(5): 104-109. DOI: 10.11911/syztjs.2019088
Citation: DUAN Penghui, LEI Xiujie, LAI Angjie, ZHANG Tongwu, KANG Bo. Research and Application of Fixed-Plane Perforating and Fracturing Technologies in Ultra-Low Permeability Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(5): 104-109. DOI: 10.11911/syztjs.2019088

Research and Application of Fixed-Plane Perforating and Fracturing Technologies in Ultra-Low Permeability Reservoirs

More Information
  • Received Date: November 24, 2018
  • Revised Date: June 23, 2019
  • Available Online: August 28, 2019
  • The Ansai Chang 6 ultra-low permeability reservoir has been developed for many years. The front edge of water flooding has swept the high permeability reservoir zone, and a large amount of remaining oil was distributed in the longitudinal low permeability zones of this reservoir. In order to tap the remaining oil in the low-permeability zone, a fixed-plane perforating and fracturing technology was put forward to form a fan-shaped stress concentration plane perpendicular to the wellbore axis, guide the radial extension of hydraulic fractures along the wellbore and control the longitudinal extension of the fractures, so as to tap the potential of remaining oil in the low permeability zone. Based on the studies of remaining oil distribution and the variation characteristics of rock mechanics parameters under long-term injection and production conditions. Then, the effect of fracture initiation under different fixed-plane perforating phases was simulated and analyzed, and the optimized the perforating phase angle according to the size of fractures fusion area. At the same time, the parameters of fracturing stimulation were optimized according to the results of fracture simulation under weak stress difference, by which the fracture height was controlled effectively. The fixed-plane perforating and fracturing technology was applied in 78 wells of the Ansai Chang 6 reservoir. The average daily oil increase per single well was 1.8 t/d after the stimulation, about twice higher than that of the conventional fracturing technologies, with the good results. The research and application of fixed-plane perforating and fracturing technology has provided a new technical means for tapping the potential of remaining oil in low-permeability zone of ultra-low permeability reservoirs.

  • [1]
    王东琪, 殷代印. 特低渗透油藏水驱开发效果评价[J]. 特种油气藏, 2017, 24(6): 107–110. doi: 10.3969/j.issn.1006-6535.2017.06.020

    WANG Dongqi, YIN Daiyin. Waterflooding performance evaluation in ultra-low permeability oil reservoir[J]. Special Oil & Gas Reservoirs, 2017, 24(6): 107–110. doi: 10.3969/j.issn.1006-6535.2017.06.020
    [2]
    张浩, 仲向云, 党永潮, 等. 鄂尔多斯盆地安塞油田长6储层微观孔隙结构[J]. 断块油气田, 2018, 25(1): 34–38.

    ZHANG Hao, ZHONG Xiangyun, DANG Yongchao, et al. Microscopic pore structure of Chang 6 reservoir in Ansai Oilfield, Ordos Basin[J]. Fault-Block Oil & Gas Field, 2018, 25(1): 34–38.
    [3]
    董晓军, 仝方超, 蒲阳峰, 等. 基于岩石物理相研究特低渗透油藏宏观剩余油分布[J]. 科学技术与工程, 2016, 16(4): 167–172. doi: 10.3969/j.issn.1671-1815.2016.04.031

    DONG Xiaojun, TONG Fangchao, PU Yangfeng, et al. A study on macroscopic remaining oil distribution of ultra-low permeability oil reservoir using petrophysical facies[J]. Science Technology and Engineering, 2016, 16(4): 167–172. doi: 10.3969/j.issn.1671-1815.2016.04.031
    [4]
    刘晓峰, 梁积伟, 郭晓丹, 等. 延安地区长6储层非均性特征[J]. 西安石油大学学报, 2019, 39(3): 507–514.

    LIU Xiaofeng, LIANG Jiwei, GUO Xiaodan, et al. Reservoir heterogeneity characteristics of Chang 6 reservoir in Yan’an Area[J]. Journal of Xi’an University of Science and Technology, 2019, 39(3): 507–514.
    [5]
    王友启. 特高含水期油田" 四点五类”剩余油分类方法[J]. 石油钻探技术, 2017, 45(2): 76–80.

    WANG Youqi. " Four Points and Five Types”remaining oil classification in oilfields with ultra-high water cut[J]. Petroleum Drilling Techniques, 2017, 45(2): 76–80.
    [6]
    杨刚, 孟尚志, 夏诗语. 孔隙压力对砂岩岩石力学特性影响试验[J]. 大庆石油地质与开发, 2019, 38(2): 67–72.

    YANG Gang, MENG Shangzhi, XIA Shiyu. Influencing experiment of the pore pressure on the sandstone mechanical properties[J]. Petroleum Geology and Oilfield Development in Daqing, 2019, 38(2): 67–72.
    [7]
    张志强, 师永民, 卜向前, 等. 低渗透油藏注水开发中地应力方向变化的研究分析[J]. 北京大学学报(自然科学版), 2016, 52(5): 861–870.

    ZHANG Zhiqiang, SHI Yongmin, BU Xiangqian, et al. A study of in-situ stress direction change during waterfloodingin the low permeability reservoirs[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(5): 861–870.
    [8]
    NARASIMHAN S, SHAIKH H, GARY J K, et al. Effect of horizontal stress models and Biot poro-elasticity on predicted fracture geometry[R]. SPE 179162, 2016.
    [9]
    张鹏海, 张子麟, 李明, 等. 低渗储油层水力压裂裂缝延伸过程及成缝机理[J]. 东北大学学报(自然科学版), 2019, 40(5): 745–749. doi: 10.12068/j.issn.1005-3026.2019.05.026

    ZHANG Penghai, ZHANG Zilin, LI Ming, et al. Extension process and fracture mechanism of hydraulic fractures in low permeability reservoir[J]. Journal of Northeastern University (Natural Science), 2019, 40(5): 745–749. doi: 10.12068/j.issn.1005-3026.2019.05.026
    [10]
    郭兴午, 刘强, 张柟乔, 等. 页岩定面射孔水力裂缝起裂特征探索及应用[J]. 断块油气田, 2018, 25(2): 254–257.

    GUO Xingwu, LIU Qiang, ZHANG Nanqiao, et al. Exploration and application of hydraulic fracture initiation characteristics of shale set surface perforating[J]. Fault-Block Oil & Gas Field, 2018, 25(2): 254–257.
    [11]
    赵振峰, 唐梅荣, 逄铭玉, 等. 定面射孔对压裂初始裂缝形态的影响研究[J]. 科学技术与工程, 2016, 16(22): 60–63. doi: 10.3969/j.issn.1671-1815.2016.22.010

    ZHAO Zhenfeng, TANG Meirong, PANG Mingyu, et al. Impact of transvers perforations on the initial fracture shape of hydraulic fracturing[J]. Science Technology and Engineering, 2016, 16(22): 60–63. doi: 10.3969/j.issn.1671-1815.2016.22.010
    [12]
    张儒鑫, 侯冰, 单清林, 等. 采用定面射孔时射孔参数的优选方法[J]. 钻采工艺, 2017, 40(3): 38–41. doi: 10.3969/J.ISSN.1006-768X.2017.03.12

    ZHANG Ruxin, HOU Bing, SHAN Qinglin, et al. Optimum selection method of perforation parameters for fixed-plane perforation[J]. Drilling & Production Technology, 2017, 40(3): 38–41. doi: 10.3969/J.ISSN.1006-768X.2017.03.12
    [13]
    文志杰, 田雷, 蒋宇静, 等. 基于应变能密度的非均质岩石损伤本构模型研究[J]. 岩石力学与工程学报, 2019, 38(7): 1332–1343.

    WEN Zhijie, TIAN Lei, JIANG Yujing, et al. Research on damage constitutive model of inhomogeneous based on strain energy density[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1332–1343.
    [14]
    张洪, 孟选刚, 邵长金, 等. 水平压裂裂缝形成机理及监测: 以七里村油田为例[J]. 岩性油气藏, 2018, 30(5): 138–145.

    ZHANG Hong, MENG Xuangang, SHAO Changjin, et al. Forming mechanism and monitoring of horizontal hydraulic fracture: a case from Qilicun Oilfield[J]. Lithologic Reservoirs, 2018, 30(5): 138–145.
    [15]
    谷文彬, 裴玉彬, 赵安军, 等. 人工隔层技术在控缝高压裂井中的应用[J]. 石油钻采工艺, 2017, 39(5): 646–651.

    GU Wenbin, PEI Yubin, ZHAO Anjun, et al. Application of artificial barrier technology to fracture height control in fracturing wells[J]. Oil Drilling & Production Technology, 2017, 39(5): 646–651.
    [16]
    姬伟, 毕凯, 李荣, 等. 提高安塞油田加密区单井产能工艺试验[J]. 钻采工艺, 2018, 41(4): 41–44. doi: 10.3969/J.ISSN.1006-768X.2018.04.13

    JI Wei, BI Kai, LI Rong, et al. Field test of procedures used to improve productivity of single wells in infill drilling area of Ansai Oilfield[J]. Drilling & Production Technology, 2018, 41(4): 41–44. doi: 10.3969/J.ISSN.1006-768X.2018.04.13
    [17]
    杜现飞, 张翔, 唐梅荣, 等. 薄互层定点多级脉冲式压裂技术研究[J]. 钻采工艺, 2018, 41(1): 65–68.

    DU Xianfei, ZHANG Xiang, TANG Meirong, et al. Research on multi-stage pulsed fracturing technology for thin interbeds[J]. Drilling & Production Technology, 2018, 41(1): 65–68.
    [18]
    曹广胜, 陈小璐, 王朔, 等. 薄差储层注采井组对应压裂裂缝参数优化[J]. 科学技术与工程, 2018, 18(32): 20–24. doi: 10.3969/j.issn.1671-1815.2018.32.004

    CAO Guangsheng, CHEN Xiaolu, WANG Shuo, et al. Parameters optimization of thin and poor reservoir injection production well group corresponding fracturing[J]. Science Technology and Engineering, 2018, 18(32): 20–24. doi: 10.3969/j.issn.1671-1815.2018.32.004
  • Related Articles

    [1]WANG Wei, YAN Ruifeng, WEI Keying, WU Hongqin, QU Wentao. Study on Mechanical and Corrosion Properties of Fe-Mn Alloy for Soluble Ball Seats[J]. Petroleum Drilling Techniques, 2022, 50(6): 133-138. DOI: 10.11911/syztjs.2022103
    [2]DUAN Youzhi, HOU Qian, LIU Jinchun, YUE Hui, AI Shuang, XIN Weidong. Study on the Influencing Factors of the Properties of Porous Shape Memory Polymer for Well Completion[J]. Petroleum Drilling Techniques, 2021, 49(2): 67-71. DOI: 10.11911/syztjs.2020100
    [3]LIU Haoya, BAO Hongzhi, LIU Yaqing, HE Qingshui, HU Zhiqiang, JIN Xin. Hardening Properties and Enhancement Mechanisms of Modified Alumina Cement at Minus Temperature[J]. Petroleum Drilling Techniques, 2021, 49(2): 54-60. DOI: 10.11911/syztjs.2020129
    [4]WU Bozhi, ZHANG Huaibing. Cementing Technology of a Self-Healing Cement Slurry in the Carbonate Formations in the Well Manshen 1[J]. Petroleum Drilling Techniques, 2021, 49(1): 67-73. DOI: 10.11911/syztjs.2020071
    [5]XIONG Min. Origin Analysis and Elimination of the S-Shaped Strength Development Curve of Cement Slurry[J]. Petroleum Drilling Techniques, 2018, 46(3): 39-43. DOI: 10.11911/syztjs.2018064
    [6]LI Zaoyuan, QI Ling, LIU Rui, GU Tao, SUN Jinfei. Experimental Study on the Integrity of Low-Density Cement Sheath with Hollow Microsphere[J]. Petroleum Drilling Techniques, 2017, 45(3): 42-47. DOI: 10.11911/syztjs.201703008
    [7]LIU Wei, ZENG Min, MA Kaihua, TAO Qian. The Study and Property Evaluation of a Lipophilic Cement Slurry With LQ Emulsion[J]. Petroleum Drilling Techniques, 2017, 45(1): 39-44. DOI: 10.11911/syztjs.201701007
    [8]Wang Xiaojing, Kong Xiangming, Zeng Min, Xu Chunhu, Zhao Zhiheng. Laboratory Research on a New Styrene Acrylic Latex Cement Slurry System[J]. Petroleum Drilling Techniques, 2014, 42(2): 80-84. DOI: 10.3969/j.issn.1001-0890.2014.02.016
    [9]Yu Yongjin, Jin Jianzhou, Liu Shuoqiong, Yuan Jinping, Xu Ming. Research and Application of Thermostable Cement Slurry[J]. Petroleum Drilling Techniques, 2012, 40(5): 35-39. DOI: 10.3969/j.issn.1001-0890.2012.05.008
    [10]Li Zaoyuan, Zhou Chao, Liu Wei, Wang Yan, Guo Xiaoyang. Laboratory Study on the Cement Slurry System with Short Waiting on Cement Time at Low Temperature[J]. Petroleum Drilling Techniques, 2012, 40(2): 46-50. DOI: 10.3969/j.issn.1001-0890.2012.02.009
  • Cited by

    Periodical cited type(10)

    1. 胡晋军,韩广海,张海峰,史为纪. 北黄海太阳盆地复杂深井小间隙尾管固井技术. 石油钻探技术. 2023(01): 40-44 . 本站查看
    2. 李成,管志川,黄哲,袁晓琪,曹继飞,张伟强,孙健翔. 基于参数不确定性的井筒失效风险评价研究. 石油机械. 2023(08): 43-50 .
    3. 丁士东,陆沛青,郭印同,李早元,卢运虎,周仕明. 复杂环境下水泥环全生命周期密封完整性研究进展与展望. 石油钻探技术. 2023(04): 104-113 . 本站查看
    4. 张超鹏,陈立超,张典坤,王扶静. 深层非常规油气固井材料发展现状及趋势浅析. 世界石油工业. 2023(06): 96-105 .
    5. 冯瑞阁,李玮,孟仁洲,王俊杰. 星探1井韧性防窜水泥浆技术. 钻井液与完井液. 2023(05): 658-664 .
    6. 杨燕,李路宽,朱宽亮,冯福平,刘圣源,韩旭. 稠油热采硅酸盐水泥抗高温技术研究进展. 科学技术与工程. 2022(01): 39-49 .
    7. 何立成. 胜利油田沙河街组页岩油水平井固井技术. 石油钻探技术. 2022(02): 45-50 . 本站查看
    8. 郝海洋,刘俊君,何吉标,王建斌,彭博,张家瑞. 页岩气超长水平井预控水泥环封固失效水泥浆技术. 天然气勘探与开发. 2022(03): 108-115 .
    9. 郭雪利,沈吉云,武刚,靳建洲,纪宏飞,徐明,刘慧婷,黄昭. 韧性材料对页岩气压裂井水泥环界面完整性影响. 表面技术. 2022(12): 232-242 .
    10. 王丹净,李景魁. 石墨烯水泥基复合材料力学性能及增强机理研究. 新型建筑材料. 2021(04): 115-118 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (941) PDF downloads (72) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return