WU Bozhi, ZHANG Huaibing. Cementing Technology of a Self-Healing Cement Slurry in the Carbonate Formations in the Well Manshen 1[J]. Petroleum Drilling Techniques, 2021, 49(1): 67-73. DOI: 10.11911/syztjs.2020071
Citation: WU Bozhi, ZHANG Huaibing. Cementing Technology of a Self-Healing Cement Slurry in the Carbonate Formations in the Well Manshen 1[J]. Petroleum Drilling Techniques, 2021, 49(1): 67-73. DOI: 10.11911/syztjs.2020071

Cementing Technology of a Self-Healing Cement Slurry in the Carbonate Formations in the Well Manshen 1

More Information
  • Received Date: May 24, 2020
  • Revised Date: September 29, 2020
  • Available Online: November 24, 2020
  • During the drilling of the fractured carbonate formation in the third spud of Well Manshen 1, serious problems were encountered such as severe sloughing of the borehole wall, irregular hole diameters, active oil and gas shows of the target layer, low displacement efficiency during tri-liner cementing, and prominent contradiction between pressure stabilization and lost circulation control. In order to ensure the safe and smooth cementing operation of the third spud of the well and guarantee the cementing quality, a self-healing cement slurry was prepared by self-healing agent BCY-200S and cement additives with good compatibility with the agent. In addition, considering that lost circulation occurred easily when running casing and cementing, the “forward injection and reverse squeeze” technique was adopted on the basis of accurately determining the position of the leakage layer according to the previous construction situation. After the application of the self-healing cement slurry and the “forward injection and reverse squeeze” cementing technique to the carbonate formation in the third spud of Well Manshen 1, the cementing operation was safe and smooth. It not only sealed the pay zone but also avoided the annular channeling in the later operation. The research and practice demonstrated that the self-healing cement could automatically repair the microfractures after encountering oil and gas. In this way, they could achieve the goal of sealing the pay zone and solving the problems of annular pressure and interlayer cross-flow in the high-pressure natural gas wells of the Tarim Oilfield.
  • [1]
    袁国栋,王鸿远,陈宗琦,等. 塔里木盆地满深1井超深井钻井关键技术[J]. 石油钻探技术,2020,48(4):21–27.

    YUAN Guodong, WANG Hongyuan, CHEN Zongqi, et al. Key drilling technologies for the ultra-deep well Manshen 1 in the Tarim Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 21–27.
    [2]
    于得水,徐泓,吴修振,等. 满深1井奥陶系桑塔木组高性能防塌水基钻井液技术[J]. 石油钻探技术,2020,48(5):49–54.

    YU Deshui, XU Hong, WU Xiuzhen, et al. High performance anti-sloughing water based drilling fluid technology for Well Manshen 1 in the Ordovician Sangtamu Formation[J]. Petroleum Drilling Techniques, 2020, 48(5): 49–54.
    [3]
    闫宇博,刘艳军,韩德勇,等. 大温差低密度水泥浆体系在NP36-3804井的应用[J]. 钻井液与完井液,2015,32(3):73–75.

    YAN Yubo, LIU Yanjun, HAN Deyong, et al. Application of big differential temperature low density cement slurry in Well NP36-380[J]. Drilling Fluid & Completion Fluid, 2015, 32(3): 73–75.
    [4]
    丁士东,陶谦,马兰荣. 中国石化固井技术进展及发展方向[J]. 石油钻探技术,2019,47(3):41–49. doi: 10.11911/syztjs.2019073

    DING Shidong, TAO Qian, MA Lanrong. Progress, outlook, and the development directions at Sinopec in cementing technology progress[J]. Petroleum Drilling Techniques, 2019, 47(3): 41–49. doi: 10.11911/syztjs.2019073
    [5]
    张艺杰,张维静. 浅谈提高油井固井质量的几点认识[J]. 中国石油和化工标准与质量,2013(16):106. doi: 10.3969/j.issn.1673-4076.2013.16.099

    ZHANG Yijie, ZHANG Weijing. Some understanding on improving well cementing quality in oil wells[J]. China Petroleum and Chemical Standards and Quality, 2013(16): 106. doi: 10.3969/j.issn.1673-4076.2013.16.099
    [6]
    鲁显兵, 孙栓科, 陈江, 等.托甫台区块超深气井ϕ177.8 mm尾管固井技术[J].石油钻采工艺, 2010, 32(增刊1): 88-91.

    LU Xianbing, SUN Shuanke, CHEN Jiang, et al. ϕ177.8 mm liner cementing technology for extra deep gas well in Tahe Oilfield[J]. Oil Drilling & Production Technology, 2010, 32(supplement 1): 88-91.
    [7]
    覃毅,孙高军,仲现,等. 大尺寸尾管固井水泥浆体系外加剂的优选[J]. 化工设计通讯,2018,44(9):247. doi: 10.3969/j.issn.1003-6490.2018.09.214

    QIN Yi, SUN Gaojun, ZHONG Xian, et al. Optimization of additives for large size tailpipe cementing slurry system[J]. Chemical Design Communications, 2018, 44(9): 247. doi: 10.3969/j.issn.1003-6490.2018.09.214
    [8]
    屈凌霄,孙万兴,沈磊,等. 塔里木油田碎屑岩储层区块油层固井技术与研究[J]. 建筑工程技术与设计,2018(31):111.

    QU Lingxiao, SUN Wanxing, SHEN Lei, et al. Cementing technology and research of clastic reservoir block in Tarim Oilfield[J]. Construction Engineering Technology and Design, 2018(31): 111.
    [9]
    孙晓杰,余纲,瞿志浩,等. 自愈合水泥在塔里木油田碎屑岩固井中的应用[J]. 天然气与石油,2017,35(4):63–67. doi: 10.3969/j.issn.1006-5539.2017.04.011

    SUN Xiaojie, YU Gang, QU Zhihao, et al. The application of self-healing cement in Tarim clastic rock well[J]. Natural Gas and Oil, 2017, 35(4): 63–67. doi: 10.3969/j.issn.1006-5539.2017.04.011
    [10]
    瞿志浩,李晓阳,董政真,等. 防窜抗盐高密度水泥浆体系的应用[J]. 西部探矿工程,2019,31(9):44–49. doi: 10.3969/j.issn.1004-5716.2019.09.017

    QU Zhihao, LI Xiaoyang, DONG Zhengzhen, et al. Application of anti channeling and salt resistant high density cement slurry system[J]. West-China Exploration Engineering, 2019, 31(9): 44–49. doi: 10.3969/j.issn.1004-5716.2019.09.017
    [11]
    龚雨.自愈合水泥浆体系优化研究[D].成都: 西南石油大学, 2015.

    GONG Yu. Study on the optimization of self-healing cement slurry system[D]. Chengdu: Southwest Petroleum University.
    [12]
    田宝振,李清洁,覃毅,等. 塔中碎屑岩井自愈合水泥浆固井技术[J]. 钻井液与完井液,2016,33(6):84–90. doi: 10.3969/j.issn.1001-5620.2016.06.015

    TIAN Baozhen, LI Qingjie, QIN Yi, et al. Cementing wells penetrating clastic rocks with self-healing cement in Block Tazhong[J]. Drilling Fluid & Completion Fluid, 2016, 33(6): 84–90. doi: 10.3969/j.issn.1001-5620.2016.06.015
    [13]
    邹建龙,徐鹏,赵宝辉,等. 微交联AMPS共聚物油井水泥防气窜剂的室内研究[J]. 钻井液与完井液,2014,31(3):61–64. doi: 10.3969/j.issn.1001-5620.2014.03.016

    ZOU Jianlong, XU Peng, ZHAO Baohui, et al. Study on slightcrosslinking AMPS copolymer as gas channeling agent in well cementing[J]. Drilling Fluid & Completion Fluid, 2014, 31(3): 61–64. doi: 10.3969/j.issn.1001-5620.2014.03.016
    [14]
    邹建龙,高永会,朱海金,等. 川东北地区高密度防气窜水泥浆体系研究[J]. 石油钻探技术,2010,38(1):46–49. doi: 10.3969/j.issn.1001-0890.2010.01.012

    ZOU Jianlong, GAO Yonghui, ZHU Haijin, et al. Research of high-density cement slurry to prevent gas migration in Northeast Sichuan[J]. Petroleum Drilling Teniques, 2010, 38(1): 46–49. doi: 10.3969/j.issn.1001-0890.2010.01.012
  • Related Articles

    [1]GE Lizhen, MENG Zhiqiang, ZHU Xiaolin, YUE Baolin, ZHU Zhiqiang. Three-Dimensional Physical Simulation Experiment on the Development Adjustment of Reservoirs with Gas Cap and Edge Water in Middle and Late Stage Reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(6): 85-92. DOI: 10.11911/syztjs.2023115
    [2]YUAN Dengyu. Experimental Study of CO2 Huff and Puff Combined with N2 Foam for Enhanced Oil Recovery by Three-Dimensional Physical Models[J]. Petroleum Drilling Techniques, 2022, 50(6): 126-132. DOI: 10.11911/syztjs.2022105
    [3]LIU Jiankun, JIANG Tingxue, HUANG Jing, WU Chunfan, JIA Wenfeng, CHEN Chen. Study on Mechanism of the Fracturing Fluid Performance Improvement and Oil Displacement Using Nanomaterials[J]. Petroleum Drilling Techniques, 2022, 50(1): 103-111. DOI: 10.11911/syztjs.2021118
    [4]LIU Jianhua, LING Wenxue, WANG Heng. Study on Rock Breaking Mechanism and Field Test of Triangular Prismatic PDC Cutters[J]. Petroleum Drilling Techniques, 2021, 49(5): 46-50. DOI: 10.11911/syztjs.2021040
    [5]XU Liangbin, LI Chaowei, WANG Yu, XIAO Kaiwen, SHENG Leixiang. An Experimental Study on the Heterometallic Corrosion Mechanism of 30CrMo Steel/625 Alloy for Underwater X-Trees[J]. Petroleum Drilling Techniques, 2019, 47(4): 116-121. DOI: 10.11911/syztjs.2019034
    [6]XIE Zhiqin. Physical Simulation Study of In-Situ Combustion by a Chemical Self-Propagating Igniter[J]. Petroleum Drilling Techniques, 2018, 46(3): 93-97. DOI: 10.11911/syztjs.2018060
    [7]Sun Jin, Deng Jingen, Wang Yao, Wang Houdong, Liu Kaiming. Experimental Study on Plugging Mechanisms and Influencing Factors of a New Foam Metal Screen[J]. Petroleum Drilling Techniques, 2015, 43(5): 123-128. DOI: 10.11911/syztjs.201505021
    [8]Zhang Xu, Jiang Tingxue, Jia Changgui, Zhang Baoping, Zhou Jian. Physical Simulation of Hydraulic Fracturing of Shale Gas Reservoir[J]. Petroleum Drilling Techniques, 2013, 41(2): 70-74. DOI: 10.3969/j.issn.1001-0890.2013.02.014
    [9]Shi Shuyou, Yang Shenglai, Zhang Hongdan. Physical Simulation Study on Effect of Operation Factors on MEOR[J]. Petroleum Drilling Techniques, 2013, 41(1): 93-97. DOI: 10.3969/j.issn.1001-0890.2013.01.018
    [10]Liu Jia, Cheng Linsong, Huang Shijun. Physical Modeling and Experiment for Horizontal Wells in Bottom Water Reservoir[J]. Petroleum Drilling Techniques, 2013, 41(1): 87-92. DOI: 10.3969/j.issn.1001-0890.2013.01.017
  • Cited by

    Periodical cited type(6)

    1. 黄梁帅. 超深强底水断溶体油藏精细注水技术优化. 粘接. 2024(08): 126-129 .
    2. 陈方方,彭得兵,王娜,王张恒,曾其信. 英买2缝洞型油藏注水及注气提高采收率研究. 西南石油大学学报(自然科学版). 2024(04): 149-158 .
    3. 佘治成,陈利新,徐三峰,肖云,张键. 缝洞型碳酸盐岩油藏注氮气提高采收率技术. 西南石油大学学报(自然科学版). 2024(04): 138-148 .
    4. 刘盈,黄雪莉,张宵宁,代真真,李婷婷. 耐温抗盐堵剂研究及其结构性能表征. 应用化工. 2023(12): 3392-3396 .
    5. 葛丽珍,王公昌,张瑞,张烈,张俊廷. 渤海S油田高含水期强水淹层避射原则研究. 石油钻探技术. 2022(03): 106-111 . 本站查看
    6. 郑松青,康志江,程晓军,李小波,张世亮,崔书岳,蒋林. 塔河油田缝洞型碳酸盐岩油藏水驱开发特征及改善对策. 油气地质与采收率. 2022(06): 95-104 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (824) PDF downloads (117) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return