DING Shidong, LU Peiqing, GUO Yintong, et al. Progress and prospect on the study of full life cycle sealing integrity of cement sheath in complex environments [J]. Petroleum Drilling Techniques,2023, 51(4):104-113. DOI: 10.11911/syztjs.2023076
Citation: DING Shidong, LU Peiqing, GUO Yintong, et al. Progress and prospect on the study of full life cycle sealing integrity of cement sheath in complex environments [J]. Petroleum Drilling Techniques,2023, 51(4):104-113. DOI: 10.11911/syztjs.2023076

Progress and Prospect on the Study of Full Life Cycle Sealing Integrity of Cement Sheath in Complex Environments

More Information
  • Received Date: February 15, 2023
  • Revised Date: June 20, 2023
  • Available Online: July 05, 2023
  • Influenced by many factors such as downhole high temperature and high pressure, acidic fluid, large-scale multi-stage fracturing after cementing, and oil and gas exploitation, the sealing integrity of the cement sheaths is vulnerable to damage, which leads to interlayer channeling, wellhead pressure, and even blowout. At present, the sealing control technology of cement sheaths centered on improving cement sheath cementation quality can no longer meet the demand for long-term development of complex oil and gas wells, and with the increasing number of deep wells, ultra-deep wells, and unconventional oil and gas wells, the environment and working conditions faced in the future will be even more complex, which will require even higher requirements for the sealing integrity of cement sheaths. To this end, the progress of research on the full life circle sealing integrity of cement sheaths in complex environments was reviewed, and the main problems existing in the sealing integrity control of cement sheaths were analyzed. The basic theoretical and scientific problems that should be solved in the future were pointed out, and related technologies were prospected. It is concluded that on the basis of continuous research on the theory of cement slurry hydration and anti-channeling in high-temperature and high-pressure environments, the failure law of cement sheath sealing in dynamic load environments, and the corrosion mechanism of cement stone in acidic environments, it is necessary to highlight the concept of full life cycle control and solve the key scientific problems such as “channeling, damage, and corrosion” leading to the failure of cement sheath sealing. It is also of great significance to innovate full life circle sealing integrity monitoring technology of cement sheaths and long-lasting sealing integrity control technology centered on “anti-channeling, anti-damage, and anti-corrosion” and establish the full life circle sealing theory and control method of cement sheaths in complex environments, so as to support the high-efficiency development of deep and unconventional oil and gas resources.

  • [1]
    曾义金. 中国石化深层超深层油气井固井技术新进展与发展建议[J/OL]. 石油钻探技术: 1–14. [2023-03-06]. http://kns.cnki.net/kcms/detail/11.1763.TE.20230302.1624.002.html.

    ZENG Yijin. New progresses and development suggestions of cementing technology on deep and ultra-deep wells of Sinopec[J/OL]. Petroleum Drilling Techniques: 1–14. [2023-03-06]. http://kns.cnki.net/kcms/detail/11.1763.TE.20230302.1624.002.html.
    [2]
    路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10.

    LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1–10.
    [3]
    程小伟,刘开强,李早元,等. 油井水泥浆液–固态演变的结构与性能[J]. 石油学报,2016,37(10):1287–1292.

    CHENG Xiaowei, LIU Kaiqiang, LI Zaoyuan, et al. Structure and properties of oil well cement slurry during liquid-solid transition[J]. Acta Petrolei Sinica, 2016, 37(10): 1287–1292.
    [4]
    OUELLET S, BUSSIÈRE B, AUBERTIN M, et al. Microstructural evolution of cemented paste backfill: Mercury intrusion porosimetry test results[J]. Cement and Concrete Research, 2007, 37(12): 1654–1665. doi: 10.1016/j.cemconres.2007.08.016
    [5]
    DE BELIE N, KRATKY J, VAN VLIERBERGHE S. Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations[J]. Cement and Concrete Research, 2010, 40(12): 1723–1733. doi: 10.1016/j.cemconres.2010.08.014
    [6]
    THOMAS J J, BIERNACKI J J, BULLARD J W, et al. Modeling and simulation of cement hydration kinetics and microstructure development[J]. Cement and Concrete Research, 2011, 41(12): 1257–1278. doi: 10.1016/j.cemconres.2010.10.004
    [7]
    SCHERER G W, FUNKHOUSER G P, PEETHAMPARAN S. Effect of pressure on early hydration of class H and white cement[J]. Cement and Concrete Research, 2010, 40(6): 845–850. doi: 10.1016/j.cemconres.2010.01.013
    [8]
    ZHOU Desheng, WOJTANOWICZ A K. New model of pressure reduction to annulus during primary cementing[R]. SPE 59137, 2000.
    [9]
    丁士东. 固井后环空气窜预测新方法[J]. 钻井液与完井液,2003,20(6):30–33. doi: 10.3969/j.issn.1001-5620.2003.06.009

    DING Shidong. New predicating method of annular channeling after cementing[J]. Drilling Fluid & Completion Fluid, 2003, 20(6): 30–33. doi: 10.3969/j.issn.1001-5620.2003.06.009
    [10]
    LI Zichang, VANDENBOSSCHE J M, IANNACCHIONE A T, et al. Theory-based review of limitations with static gel strength in cement/matrix characterization[J]. SPE Drilling & Completion, 2016, 31(2): 145–158.
    [11]
    陆沛青,桑来玉,谢少艾,等. 苯丙胶乳水泥浆防气窜效果与失重规律分析[J]. 石油钻探技术,2019,47(1):52–58. doi: 10.11911/syztjs.2018141

    LU Peiqing, SANG Laiyu, XIE Shaoai, et al. Analysis of the anti-gas channeling effect and weight loss law of styrene-acrylic latex cement slurry[J]. Petroleum Drilling Techniques, 2019, 47(1): 52–58. doi: 10.11911/syztjs.2018141
    [12]
    孙坤忠,陶谦,周仕明,等. 丁山区块深层页岩气水平井固井技术[J]. 石油钻探技术,2015,43(3):55–60.

    SUN Kunzhong, TAO Qian, ZHOU Shiming, et al. Cementing technology for deep shale gas horizontal well in the Dingshan Block[J]. Petroleum Drilling Techniques, 2015, 43(3): 55–60.
    [13]
    齐奉忠,杨成颉,刘子帅. 提高复杂油气井固井质量技术研究:保证水泥环长期密封性的技术措施[J]. 石油科技论坛,2013,32(1):19–22.

    QI Fengzhong, YANG Chengjie, LIU Zishuai. Improve cementing quality of complicated oil and gas wells-ensure long-term sealing performance of cement sheath[J]. Petroleum Science and Technology Forum, 2013, 32(1): 19–22.
    [14]
    李明,邓双,严平,等. 纤维/晶须材料对固井水泥石的增韧机理研究[J]. 西南石油大学学报(自然科学版),2016,38(5):151–156.

    LI Ming, DENG Shuang, YAN Ping, et al. Research on the toughening mechanism of fiber/whisker on oil well cement stone[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(5): 151–156.
    [15]
    刘昱亮,李早元,薛元陶,等. 固井水性环氧树脂水泥石力学性能研究[J]. 硅酸盐通报,2019,38(2):339–343.

    LIU Yuliang, LI Zaoyuan, XUE Yuantao, et al. Study on mechanical properties of cementing waterborne epoxy cement[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 339–343.
    [16]
    郑友志,徐冰青,蒲军宏,等. 固井水泥体系在不同条件下的力学行为规律[J]. 天然气工业,2017,37(1):119–123.

    ZHENG Youzhi, XU Bingqing, PU Junhong, et al. Mechanical behaviors of cement systems in different conditions[J]. Natural Gas Industry, 2017, 37(1): 119–123.
    [17]
    王磊,曾义金,张青庆,等. 高温环境下油井水泥石力学性能试验[J]. 中国石油大学学报(自然科学版),2018,42(6):88–95.

    WANG Lei, ZENG Yijin, ZHANG Qingqing, et al. Experimental study on mechanical properties of oil well cement under high temperature[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(6): 88–95.
    [18]
    李军,陈勉,柳贡慧,等. 套管、水泥环及井壁围岩组合体的弹塑性分析[J]. 石油学报,2005,26(6):99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023

    LI Jun, CHEN Mian, LIU Gonghui, et al. Elastic-plastic analysis of casing-concrete sheath-rock combination[J]. Acta Petrolei Sinica, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023
    [19]
    席岩,李军,陶谦,等. 循环载荷作用下微环隙的产生及演变[J]. 断块油气田,2020,27(4):522–527.

    XI Yan, LI Jun, TAO Qian, et al. Emergence and evolution of micro-annulus under cyclic loading[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 522–527.
    [20]
    ZHOU Shiming, LIU Rengguang, ZENG Hao, et al. Mechanical characteristics of well cement under cyclic loading and its influence on the integrity of shale gas wellbores[J]. Fuel, 2019, 250: 132–143. doi: 10.1016/j.fuel.2019.03.131
    [21]
    顾军,高兴原,刘洪. 油气井固井二界面封固系统及其破坏模型[J]. 天然气工业,2006,26(7):74–76.

    GU Jun, GAO Xingyuan, LIU Hong. Two-interface isolation system of oil/gas well cementing and its damage model[J]. Natural Gas Industry, 2006, 26(7): 74–76.
    [22]
    郭辛阳,步玉环,李娟,等. 变温条件下泥饼对二界面胶结强度的影响[J]. 钻井液与完井液,2010,27(1):55–57. doi: 10.3969/j.issn.1001-5620.2010.01.018

    GUO Xinyang, BU Yuhuan, LI Juan, et al. The effect of mud cake on the bond strength of the second interface under varied temperatures[J]. Drilling Fluid & Completion Fluid, 2010, 27(1): 55–57. doi: 10.3969/j.issn.1001-5620.2010.01.018
    [23]
    顾军,杨卫华,秦文政,等. 固井二界面封隔能力评价方法研究[J]. 石油学报,2008,29(3):451–454.

    GU Jun, YANG Weihua, QIN Wenzheng, et al. Evaluation method for isolation ability of cement-formation interface[J]. Acta Petrolei Sinica, 2008, 29(3): 451–454.
    [24]
    郭辛阳,沈忠厚,步玉环,等. 固井微环空成因研究进展及解决方法[J]. 钻采工艺,2009,32(5):1–3.

    GUO Xinyang, SHEN Zhonghou, BU Yuhuan, et al. Research development of cementing microannular and its solving methods[J]. Drilling & Production Technology, 2009, 32(5): 1–3.
    [25]
    OPEDAL N, TODOROVIC J, TORSÆTER M, et al. Experimental study on the cement-formation bonding[R]. SPE 168138, 2014.
    [26]
    LI Zaoyuan, GU Tao, GUO Xiaoyang, et al. Characterization of the unidirectional corrosion of oilwell cement exposed to H2S under high-sulfur gas reservoir conditions[J]. RSC Advances, 2015, 5(87): 71529–71536. doi: 10.1039/C5RA12481F
    [27]
    郭小阳,辜涛,李早元,等. 水湿环境下硫化氢对固井水泥石的腐蚀机理[J]. 天然气工业,2015,35(10):93–98. doi: 10.3787/j.issn.1000-0976.2015.10.012

    GUO Xiaoyang, GU Tao, LI Zaoyuan, et al. Corrosion mechanism of hydrogen sulfide on well cement under water wet environments[J]. Natural Gas Industry, 2015, 35(10): 93–98. doi: 10.3787/j.issn.1000-0976.2015.10.012
    [28]
    VENHUIS M A, REARDON E J. Vacuum method for carbonation of cementitious wasteforms[J]. Environmental Science & Technology, 2001, 35(20): 4120–4125.
    [29]
    XU Bihua, YUAN Bin, WANG Yongqing, et al. H2S-CO2 mixture corrosion-resistant Fe2O3-amended wellbore cement for sour gas storage and production wells[J]. Construction and Building Materials, 2018, 188: 161–169. doi: 10.1016/j.conbuildmat.2018.08.120
    [30]
    CHENG Xiaowei, MEI Kaiyuan, LI Zaoyuan, et al. Research on the interface structure during unidirectional corrosion for oil-well cement in H2S based on computed tomography technology[J]. Industrial & Engineering Chemistry Research, 2016, 55(41): 10889–10895.
    [31]
    LIN Yuanhua, ZHU Dajiang, ZENG Dezhi, et al. Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions[J]. Corrosion Science, 2013, 74: 13–21. doi: 10.1016/j.corsci.2013.03.018
    [32]
    SAUKI A B, IRAWAN S. Effects of pressure and temperature on well cement degradation by supercritical CO2[J]. International Journal of Engineering & Technology, 2010, 10(4): 53–61.
    [33]
    田辉,郭辛阳,宋雨媛,等. 基于化学热力学的耐二氧化碳腐蚀水泥水化产物控制[J]. 钻采工艺,2021,44(2):86–89.

    TIAN Hui, GUO Xinyang, SONG Yuyuan, et al. Control of hydration products of CO2 resistant cements based on chemical thermodynamics[J]. Drilling & Production Technology, 2021, 44(2): 86–89.
    [34]
    张聪,张景富,乔宏宇,等. CO2腐蚀油井水泥石的深度及其对性能的影响[J]. 钻井液与完井液,2010,27(6):49–51.

    ZHANG Cong, ZHANG Jingfu, QIAO Hongyu, et al. Corrosive depth and effect on oil well cement stone by CO2[J]. Drilling Fluid & Completion Fluid, 2010, 27(6): 49–51.
    [35]
    ZHA Xiaoxiong, NING Jiaqian, SAAFI M, et al. Effect of supercritical carbonation on the strength and heavy metal retention of cement-solidified fly ash[J]. Cement and Concrete Research, 2019, 120: 36–45. doi: 10.1016/j.cemconres.2019.03.005
    [36]
    CHEN Ziyu, LIN Junlin, SAGOE-CRENTSIL K, et al. Development of hybrid machine learning-based carbonation models with weighting function[J]. Construction and Building Materials, 2022, 321: 126359. doi: 10.1016/j.conbuildmat.2022.126359
    [37]
    ZHANG Jian, WANG Changning, PENG Zhigang. Corrosion integrity of oil cement modified by environment responsive microspheres for CO2 geologic sequestration wells[J]. Cement and Concrete Research, 2021, 143: 106397. doi: 10.1016/j.cemconres.2021.106397
    [38]
    ZHANG Bojian, ZOU Changjun, PENG Zhigang, et al. Study on the preparation and anti-CO2 corrosion performance of soap-free latex for oil well cement[J]. ACS Omega, 2020, 5(36): 23028–23038. doi: 10.1021/acsomega.0c02729
    [39]
    谢荣华,刘继生,李晓伟. 固井质量评价技术发展及其对油田开发的影响[J]. 测井技术,2019,43(4):339–343.

    XIE Ronghua, LIU Jisheng, LI Xiaowei. Cementing quality evaluation technology and its influence on oilfield development[J]. Well Logging Technology, 2019, 43(4): 339–343.
    [40]
    侯振永,郝晓良,马焕英,等. 超声固井质量评价方法改进及应用[J]. 测井技术,2019,43(6):657–660.

    HOU Zhenyong, HAO Xiaoliang, MA Huanying, et al. Improvement and application of the quality evaluation method for UIL cement bond[J]. Well Logging Technology, 2019, 43(6): 657–660.
    [41]
    JULIAN J Y, KING G E, CISMOSKI D A, et al. Downhole leak determination using fiber-optic distributed-temperature surveys at Prudhoe Bay, Alaska[R]. SPE 107070, 2007.
    [42]
    NOBLE L, REES H, LANGNES T, et al. Using distributed fibre optic sensing to recover well integrity and restore production[R]. SPE 204450, 2021.
    [43]
    LI X, PARKER T, FARHADIROUSHAN M, et al. Evaluating a concept of using distributed optical fiber temperature and strain sensor for continuous monitoring of casing and completion mechanical deformation in intelligent wells[R]. OTC 16285, 2004.
    [44]
    SUN Yankun, XUE Ziqiu, PARK H, et al. Optical sensing of CO2 geological storage using distributed fiber-optic sensor: From laboratory to field-scale demonstrations[J]. Energy & Fuels, 2021, 35(1): 659–669.
    [45]
    钱杰,沈泽俊,张卫平,等. 中国智能完井技术发展的机遇与挑战[J]. 石油地质与工程,2009,23(2):76–79.

    QIAN Jie, SHEN Zejun, ZHANG Weiping, et al. Opportunity and challenge of intelligent completion technique in China[J]. Petroleum Geology and Engineering, 2009, 23(2): 76–79.
    [46]
    张华礼,谢南星,李少兵,等. 气井永置式井下压力温度监测技术及其应用展望[J]. 钻采工艺,2015,28(1):53–55.

    ZHANG Huali, XIE Nanxing, LI Shaobing, et al. The permanent downhole pressure & temperature monitoring technology in gas well[J]. Drilling & Production Technology, 2015, 28(1): 53–55.
    [47]
    吴天乾,宋文宇,谭凌方,等. 超低密度水泥固井质量评价方法[J]. 石油钻探技术,2022,50(1):65–70.

    WU Tianqian, SONG Wenyu, TAN Lingfang, et al. Evaluation method for cementing quality of ultra-low-density cement[J]. Petroleum Drilling Techniques, 2022, 50(1): 65–70.
    [48]
    何汉平. 基于多因素耦合的井筒完整性风险评价[J]. 中国安全生产科学技术,2017,13(7):168–172.

    HE Hanping. Risk evaluation of wellbore integrity based on multi-factor coupling[J]. Journal of Safety Science and Technology, 2017, 13(7): 168–172.
    [49]
    赵效锋,管志川,廖华林,等. 水泥环力学完整性系统化评价方法[J]. 中国石油大学学报(自然科学版),2014,38(4):87–92.

    ZHAO Xiaofeng, GUAN Zhichuan, LIAO Hualin, et al. Systemic evaluation method of cement mechanical integrity[J]. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38(4): 87–92.
    [50]
    何龙. 元坝气田钻井工程井筒完整性设计与管理[J]. 钻采工艺,2016,39(2):6–8.

    HE Long. Wellbore integrity design and management during the developing of Yuanba sour gas reservoir[J]. Drilling & Production Technology, 2016, 39(2): 6–8.
    [51]
    COOKE C E, Jr, KLUCK M P, MEDRANO R. Field measurements of annular pressure and temperature during primary cementing[J]. Journal of Petroleum Technology, 1983, 35(8): 1429–1438. doi: 10.2118/11206-PA
    [52]
    陈超,王龙,李鹏飞,等. SN井区抗高温液硅–胶乳防气窜水泥浆[J]. 钻井液与完井液,2016,33(5):88–91.

    CHEN Chao, WANG Long, LI Pengfei, et al. HTHP anti-channeling liquid silica latex cement slurry used in Block SN[J]. Drilling Fluid & Completion Fluid, 2016, 33(5): 88–91.
    [53]
    罗俊丰,张伟国,廖易波,等. 新型抗高温聚合物/胶乳防气窜水泥浆体系在南海流花深水区块的应用[J]. 石油钻采工艺,2015,37(1):115–118.

    LUO Junfeng, ZHANG Weiguo, LIAO Yibo, et al. Application of new high-temperature resistant polymer/latex anti-gas channeling cement slurry system in Liuhua deepwater block of the South China Sea[J]. Oil Drilling & Production Technology, 2015, 37(1): 115–118.
    [54]
    王涛, 申峰, 展转盈, 等. 页岩气小井眼水平井纳米增韧水泥浆固井技术[J]. 石油钻探技术, 2023, 51(3): 51-57.

    WANG Tao, SHEN Feng, ZHAN Zhuanying, et al. Cementing technology of nano toughened cement slurry for shale gas slim hole horizontal wells[J]. Petroleum Drilling Techniques, 2023, 51(3): 51-57.
    [55]
    邹双,冯明慧,张天意,等. 多尺度纤维韧性水泥浆体系研究与应用[J]. 石油钻探技术,2020,48(6):40–46. doi: 10.11911/syztjs.2020084

    ZOU Shuang, FENG Minghui, ZHANG Tianyi, et al. Research and application of tough cement slurry systems with multi-scale fiber[J]. Petroleum Drilling Techniques, 2020, 48(6): 40–46. doi: 10.11911/syztjs.2020084
    [56]
    李斐. 抗高温弹韧性水泥浆体系优化研究[J]. 钻井液与完井液,2021,38(5):623–627.

    LI Fei. Study on optimization of high temperature cement slurry with elasticity and toughness[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 623–627.
    [57]
    李成嵩,李社坤,范明涛,等. 高密度弹韧性水泥浆力学数值模拟[J]. 钻井液与完井液,2023,40(2):233–240.

    LI Chengsong, LI Shekun, FAN Mingtao, et al. Numerical simulation study on mechanics of high density elastic and tough cement slurries[J]. Drilling Fluid & Completion Fluid, 2023, 40(2): 233–240.
    [58]
    徐小峰,宋巍,杨燕,等. 页岩储层水平井固井水泥浆体系应用研究进展[J]. 科学技术与工程,2023,23(17):7161–7173. doi: 10.12404/j.issn.1671-1815.2023.23.17.07161

    XU Xiaofeng, SONG Wei, YANG Yan, et al. Research progress in application of cement slurry system for horizontal well in shale reservoir[J]. Science Technology and Engineering, 2023, 23(17): 7161–7173. doi: 10.12404/j.issn.1671-1815.2023.23.17.07161
    [59]
    何吉标,彭小平,刘俊君,等. 抗高交变载荷水泥浆的研制及其在涪陵页岩气井的应用[J]. 石油钻探技术,2020,48(3):35–40. doi: 10.11911/syztjs.2020054

    HE Jibiao, PENG Xiaoping, LIU Junjun,et al. Development of an anti-deformation cement slurry under alternative loading and its application in Fuling shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 35–40. doi: 10.11911/syztjs.2020054
  • Cited by

    Periodical cited type(7)

    1. 李宁,刘鹏,范华军,胡江涛,武宏亮. 基于阵列声波测井的井下多尺度压裂效果评价方法. 石油钻探技术. 2024(01): 1-7 . 本站查看
    2. 朱日祥,金之钧,底青云,杨长春,陈文轩,田飞,张文秀. 智能导钻技术体系与相关理论研发进展. 地球物理学报. 2023(01): 1-15 .
    3. 苏义脑,窦修荣,高文凯,刘珂. 油气井随钻测量技术发展思考与展望. 石油科学通报. 2023(05): 535-554 .
    4. 刘西恩,赵腾,车小花. 基于声波垂直入射于井壁的随钻远探测方法及初步数值模拟. 测井技术. 2023(05): 542-550+577 .
    5. 孙志峰,仇傲,金亚,李杰,罗博,彭凯旋. 随钻多极子声波测井仪接收声系的优化设计与试验. 石油钻探技术. 2022(04): 114-120 . 本站查看
    6. 朱祖扬. 随钻声波远探测声波速度成像数值模拟与试验. 石油钻探技术. 2022(06): 35-40 . 本站查看
    7. 孙志峰,卢华涛,李国梁. 随钻声波测井关键技术研究进展. 科学技术与工程. 2022(36): 15849-15859 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (367) PDF downloads (128) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return