Citation: | LIU Xiushan. Principal Normal Angle of Borehole Trajectory and Its Equation[J]. Petroleum Drilling Techniques, 2019, 47(3): 103-106. DOI: 10.11911/syztjs.2019052 |
Based on the deflection behavior and the characteristics of borehole trajectories, a concept and definition of the principal normal angle of a borehole trajectory was proposed in this paper, and the essential difference between the deflection direction of borehole trajectory and the directional orientation of steering tool was clarified. On this basis, the general equation of the principal normal angle of borehole trajectory was established, and the specific calculation method and formula of the principal normal angle were provided in combination with common borehole trajectory models. The relationships among different deflection parameters were revealed, and the method of characterizing the deflection morphology of a borehole trajectory was established using their characteristic curves. The studies show that the principal normal angle of a borehole trajectory is different from the tool face angle of steering tool. Further, the Cartesian coordinate- polar coordinate coupling based characteristic curve can be used to characterize multiple sets of deflection parameters and their relationships. The research results clarified some fuzzy understandings on the existing theories and techniques, and developed a characterization method for the deflection behavior of borehole trajectories.
[1] |
韩志勇. 定向钻井设计与计算[M]. 2版. 东营: 中国石油大学出版社, 2007: 254-255.
HAN Zhiyong. Design and calculation of directional drilling[M]. 2nd ed. Dongying: China University of Petroleum Press, 2007: 254-255.
|
[2] |
刘修善. 井眼轨道几何学[M]. 北京: 石油工业出版社, 2006: 74.
LIU Xiushan. Geometry of wellbore trajectory[M]. Beijing: Petroleum Industry Press, 2006: 74.
|
[3] |
刘修善. 导向钻具定向造斜方程及井眼轨迹控制机制[J]. 石油勘探与开发, 2017, 44(5): 788–793.
LIU Xiushan. Directional deflection equations for steerable drilling tools and the control mechanism of wellbore trajectory[J]. Petroleum Exploration and Development, 2017, 44(5): 788–793.
|
[4] |
LIU Xiushan. New technique calculates borehole curvature, torsion[J]. Oil & Gas Journal, 2006, 104(40): 41–49.
|
[5] |
GUO Boyun, MISKA STEFAN, LEE R L. Constant-curvature method to plan 3D directional wells[R]. SPE 23576, 1991.
|
[6] |
SCHUH F J. Trajectory equations for constant tool face angle deflections[R]. SPE 23853, 1992.
|
1. |
刘凯,李超跃,姚振杰,杨康,王苛宇. CO_2驱混相带演化规律研究进展. 油气与新能源. 2025(01): 1-8 .
![]() | |
2. |
霍宏博,刘东东,陶林,王德英,宋闯,何世明. 基于CO_2提高采收率的海上CCUS完整性挑战与对策. 石油钻探技术. 2023(02): 74-80 .
![]() | |
3. |
李蕾,郑自刚,杨承伟,陈征,张文兴,徐北辰. 超低渗油藏超临界CO_2驱油特征及原油动用能力. 科学技术与工程. 2021(29): 12551-12558 .
![]() | |
4. |
项鹏心. 二氧化碳驱油技术研究及应用. 石化技术. 2021(12): 33-34 .
![]() | |
5. |
李友全,阎燕,于伟杰. 利用试井技术确定低渗透油藏CO_2驱替前缘的方法. 油气地质与采收率. 2020(01): 120-125 .
![]() | |
6. |
郑玉飞,李翔,徐景亮,于萌. 渤海P油田层内生成CO_2调驱技术. 石油钻探技术. 2020(02): 108-112 .
![]() | |
7. |
阎燕,李友全,于伟杰,王杰,刘同敬,王朝明. 低渗透油藏CO_2驱采油井试井模型. 断块油气田. 2018(01): 80-84 .
![]() | |
8. |
钱坤,杨胜来,马轩,窦洪恩,黄宇. 超低渗透油藏CO_2吞吐利用率实验研究. 石油钻探技术. 2018(06): 77-81 .
![]() | |
9. |
唐万举,邓学峰,卢瑜林,王萍,斯容,周志峰. 致密储层CO_2驱油实验. 断块油气田. 2018(06): 757-760 .
![]() | |
10. |
张丁涌. 超稠油油藏HDCS开采技术优化. 断块油气田. 2017(03): 409-412 .
![]() |