WANG Lei, HAN Xuebiao, CAO Yingquan, et al. A lithology identification method for buried hills in the Lishui-Jiaojiang Sag based on correspondence analysis [J]. Petroleum Drilling Techniques,2024, 52(1):140-145. DOI: 10.11911/syztjs.2024019
Citation: WANG Lei, HAN Xuebiao, CAO Yingquan, et al. A lithology identification method for buried hills in the Lishui-Jiaojiang Sag based on correspondence analysis [J]. Petroleum Drilling Techniques,2024, 52(1):140-145. DOI: 10.11911/syztjs.2024019

A Lithology Identification Method for Buried Hills in the Lishui-Jiaojiang Sag Based on Correspondence Analysis

More Information
  • Received Date: May 11, 2023
  • Revised Date: December 08, 2023
  • Available Online: January 16, 2024
  • As oil and gas exploration in the Lishui-Jiaojiang Sag moves towards buried hills, drilling has encountered many lithology formations such as granite, gneiss, and limestone. In addition, with the application of new drilling technology, the cuttings for logging are fine and usually mixed together, and it is difficult to identify the lithology accurately on the well site. In order to solve this problem, based on X-ray diffraction (XRD) and X-ray fluorescence (XRF) element logging data, firstly, the ReliefF algorithm was used to identify eight elements and four minerals sensitive to buried hills and overlying strata, and then the selected elements and minerals were used as the characteristic parameters of the original data set for corresponding analysis. The H1and H2 functions of granite, gneiss, limestone, and other complex lithologies were established, and the complex lithology identification chart was drawn. Specifically, the H1and H2 of granite were −3.0~1.0 and 1.0~3.0, and those of gneiss were −4.0~0 and −2.5~1.0. The H1and H2 of limestone were 0.5~2.5 and −9.0~−3.0, and those of sandstone were 2.5~10.0 and −1.0~2.5. In addition, the H1and H2 of mudstone were −1.0~3.5 and −1.0~0.5. The lithology identification method based on corresponding analysis was applied to six wells in the oil and gas area of the Lishui-Jiaojiang Sag, and the identification accuracy of complex lithology reached 90.7%, which can provide technical support for drilling operation safety and comprehensive evaluation of buried hill reservoirs.

  • [1]
    王长势,朱伟林,陈春峰,等. 东海丽水–椒江新生代凹陷基底的岩性及分布[J]. 同济大学学报(自然科学版),2014,42(4):636–644.

    WANG Zhangshi, ZHU Weilin, CHEN Chunfeng, et al. Basement lithology and distribution of Lishui-Jiaojiang Cenozoic Sag in East China Sea[J]. Journal of Tongji University(Natural Science), 2014, 42(4): 636–644.
    [2]
    夏斌,张敏强,万志峰,等. 东海丽水-椒江凹陷构造样式与含油气远景[J]. 华南地震,2007,27(3):1–8.

    XIA Bin, ZHANG Minqiang, WAN Zhifeng, et al. Structural styles and hydrocarbon prospects in the Lishui-Jiaojiang Sag, the East China Sea[J]. South China Journal of Seismology, 2007, 27(3): 1–8.
    [3]
    张建培,张田,唐贤君. 东海陆架盆地类型及其形成的动力学环境[J]. 地质学报,2014,88(11):2033–2043.

    ZHANG Jianpei, ZHANG Tian, TANG Xianjun. Basin type and dynamic environment in the East China Sea shelf basin[J]. Acta Geologica Sinica, 2014, 88(11): 2033–2043.
    [4]
    张胜利,夏斌. 丽水–椒江凹陷构造演化特征与油气聚集[J]. 天然气地球科学,2005,16(3):324–328.

    ZHANG Shengli, XIA Bin. Characters of tectonic evolution of the Lishui-jiaojiang sag and oil accumulation[J]. Natural Gas Geo-science, 2005, 16(3): 324–328.
    [5]
    郭明宇,李战奎,徐鲲,等. 渤中26-6构造太古界潜山储层含水识别方法[J]. 石油钻探技术,2023,51(3):137–143.

    GUO Mingyu, LI Zhankui, XU Kun, et al. Method of identifying water content in the Archaean buried hill reservoir of BZ 26-6 Structure[J]. Petroleum Drilling Techniques, 2023, 51(3): 137–143.
    [6]
    赵彦泽,李战奎,苑仁国,等. 太古界潜山界面卡取方法及应用[J]. 石油钻采工艺,2018,40(增刊1):55–57.

    ZHAO Yanze, LI Zhankui, YUAN Renguo, et al. Method and application of Archaean buried hill interface identification[J]. Oil Drilling & Production Technology, 2018, 40(supplement 1): 55–57.
    [7]
    王茂桢,王冰洁,杨传超,等. 辽东湾坳陷斜坡型太古界潜山储层特征及主控因素:以锦州25-A构造为例[J]. 断块油气田,2023,30(4):624–631.

    WANG Maozhen, WANG Bingjie, YANG Chuanchao, et al. Reservoir characteristics and main controlling factors of slope-type Archean buried hill in Liaodongwan Depression: A case study of Jinzhou 25-A Structure[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 624–631.
    [8]
    程建,周卓明,段铁军,等. 梨树断陷基岩潜山油气成藏主控因素分析与勘探前景[J]. 特种油气藏,2020,27(4):26–32.

    CHENG Jian, ZHOU Zhuoming, DUAN Tiejun, et al. Main-controlling factor analysis of hydrocarbon accumulation in the bedrock buried hill of Lishu Fault Depression and its exploration prospect[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 26–32.
    [9]
    周心怀,王清斌,冯冲,等. 渤海海域大型太古界潜山储层形成条件及地质意义[J]. 地球科学,2022,47(5):1534–1548.

    ZHOU Xinhuai, WANG Qingbin, FENG Chong, et al. Formation conditions and geological significance of large Archean buried hill reservoirs in Bohai Sea[J]. Earth Science, 2022, 47(5): 1534–1548.
    [10]
    刘杰,徐国盛,温华华,等. 珠江口盆地惠州26-6构造古潜山—古近系油气成藏主控因素[J]. 天然气工业,2021,41(11):54–63.

    LIU Jie, XU Guosheng, WEN Huahua, et al. Main factors controlling the formation of buried hill-Paleogene reservoirs in 26-6 Structure of Huizhou, Pearl River Mouth Basin[J]. Natural Gas Industry, 2021, 41(11): 54–63.
    [11]
    胡安文,牛成民,王德英,等. 渤海湾盆地渤中凹陷渤中19-6构造凝析油气特征与形成机制[J]. 石油学报,2020,41(4):403–411.

    HU Anwen, NIU Chengmin, WANG Deying, et al. The characteristics and formation mechanism of condensate oil and gas in Bozhong 19-6 Structure, Bozhong Sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2020, 41(4): 403–411.
    [12]
    高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023,51(4):20–34. doi: 10.11911/syztjs.2023022

    GAO Deli, LIU Wei, WAN Xuxin, et al. Study on key factors influencing the ROP improvement of PDC bits[J]. Petroleum Drilling Techniques, 2023, 51(4): 20–34. doi: 10.11911/syztjs.2023022
    [13]
    王亚萍,况雨春,杨高. 基于MATLAB的PDC钻头几何学仿真模型[J]. 西南石油大学学报,2007,29(增刊2):116–118.

    WANG Yaping, KUANG Yuchun, YANG Gao. The geometry emulation model of PDC bit by using MATLAB[J]. Journal of Southwest Petroleum University, 2007, 29(supplement 2): 116–118.
    [14]
    冯定. 涡轮钻具防斜打快钻井理论与技术研究[J]. 石油钻探技术,2007,35(3):9–11.

    FENG Ding. Theoretical and technical study of deviation control and fast drilling in turbodrill[J]. Petroleum Drilling Techniques, 2007, 35(3): 9–11.
    [15]
    王宏波,姚军,李双文,等. 利用对应分析法校正火成岩岩性识别图版:以黄骅凹陷为例[J]. 天然气地球科学,2013,24(4):719–724.

    WANG Hongbo, YAO Jun, LI Shuangwen, et al. The correction of correspondence analysis to the lithologic identification plate of igneous rocks in Huanghua Depression[J]. Natural Gas Geoscience, 2013, 24(4): 719–724.
    [16]
    吴欣松,吴胜和,聂昌谋,等. 对应分析方法在储集层评价中的应用[J]. 石油勘探与开发,1999,26(2):90–92.

    WU Xinsong, WU Shenghe, NIE Changmou, et al. Application of correspondence analysis in the evaluation of reservoir beds[J]. Petroleum Exploration and Development, 1999, 26(2): 90–92.
    [17]
    孙宁. 对应分析法在储层定量分类评价中的应用:以子长油田安定区长6储层为例[J]. 中国石油和化工标准与质量,2019,39(1):107–108. doi: 10.3969/j.issn.1673-4076.2019.01.053

    SUN Ning. Application of correspondence analysis method in quantitative classification and evaluation of reservoir: A case study of Chang 6 Reservoir in Anding Area of Zichang Oilfield[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(1): 107–108. doi: 10.3969/j.issn.1673-4076.2019.01.053
    [18]
    刘绍平,汤军,许晓宏. 数学地质方法及应用[M]. 北京:石油工业出版社,2011.

    LIU Shaoping, TANG Jun, XU Xiaohong. The methods and applications on mathematical geology[M]. Beijing: Petroleum Industry Press, 2011.
    [19]
    刘冬梅. 对应分析在航空安全事件研究中的应用[D]. 天津:中国民航大学,2016.

    LIU Dongmei. Research of aviation safety incidents based on correspondence analysis[D]. Tianjin: Civil Aviation University of China, 2016.
    [20]
    谭忠健,邓津辉,张国强,等. 渤海海域变质岩潜山储层有效性录井综合评价技术[J]. 特种油气藏,2023,30(5):11–17.

    TAN Zhongjian, DENG Jinhui, ZHANG Guoqiang, et al. Comprehensive evaluation technology of metamorphic submarine reservoir effectiveness mud-logging in Bohai Sea Area[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 11–17.
  • Related Articles

    [1]LI Zhankui, WU Liwei, GUO Mingyu, XU Kun, MA Fugang, LI Wenlong. Research and Application of Integrated Geological Engineering Technology for Deep High-Pressure Wells in the Bozhong Sag[J]. Petroleum Drilling Techniques, 2024, 52(2): 194-201. DOI: 10.11911/syztjs.2024031
    [2]LIN Jingqi, MENG Xin, LI Qingqing, CAO Zhifeng, ZHANG Kai, MU Li. Characterization Method and Application of Electrical Imaging Logging in Conglomerate Reservoir: A Case Study in Mahu Sag of Junggar Basin[J]. Petroleum Drilling Techniques, 2022, 50(2): 126-131. DOI: 10.11911/syztjs.2022059
    [3]CHEN Kui, ZHU Shaopeng, ZOU Mingsheng, GAI Yonghao, DONG Zhihua, ZHU Yushuang. Research on Development Evaluation Well Drilling Modes for Exploration and Development Integration in Weixinan Sag[J]. Petroleum Drilling Techniques, 2021, 49(6): 42-49. DOI: 10.11911/syztjs.2021108
    [4]WANG Dong, LAI Xueming, TANG Qing, ZHOU Junjie. Technologies for Snubbing Services in Horizontal Shale Oil Wells in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 150-154. DOI: 10.11911/syztjs.2021077
    [5]LIU Tianen, ZHANG Haijun, YUAN Guangjie, LI Guotao, YIN Qiwu, CHEN Fei. Optimized and Fast Drilling Technologies for Horizontal Shale Oil Wells in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 46-52. DOI: 10.11911/syztjs.2020127
    [6]TANG Cheng, WANG Zhizhan, CHEN Ming, WANG Chongjing, LIANG Bo, SHI Qiang. Accurate Geosteering Technology for Deep Shale Gas Based on XRF Element Mud Logging[J]. Petroleum Drilling Techniques, 2019, 47(6): 103-110. DOI: 10.11911/syztjs.2019135
    [7]ZHANG Guodong, LU Fawei, CHEN Bo, LUO Jian, HU Wenliang, HE Yuchun. A Fluid Properties while Drilling Rapid Identification Method under Oil-Based Drilling Fluid Conditions for Low Porosity and Low Permeability Reservoirs in the Xihu Sag[J]. Petroleum Drilling Techniques, 2019, 47(5): 116-120. DOI: 10.11911/syztjs.2019100
    [8]WANG Jianlong, QI Changli, LIU He, CHEN Peng, WANG Hong, ZHENG Yongfeng. Key Technologies for Drilling Horizontal Wells in Tight Oil and Gas Reservoirs in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2019, 47(5): 11-16. DOI: 10.11911/syztjs.2019084
    [9]ZHANG Xinhua, SHE Mingjun, WANG Yanshu, XIA Jie. The Progress and Pontential of the Application of Laser Technology in Mud Logging[J]. Petroleum Drilling Techniques, 2018, 46(6): 111-117. DOI: 10.11911/syztjs.2018146
    [10]Zhang Xinhua, Zou Xiaochun, Zhao Hongyan, Li Fang, Qin Liming. A New Method of Evaluation Shale Brittleness Using X-ray Fluorescence Element Logging Data[J]. Petroleum Drilling Techniques, 2012, 40(5): 92-95. DOI: 10.3969/j.issn.1001-0890.2012.05.020
  • Cited by

    Periodical cited type(5)

    1. 吴文明,侯吉瑞. 新疆某油田油井堵塞物成分及成因分析. 油田化学. 2022(02): 349-354 .
    2. 姜亮,胡晋阳,陈永锋,许清海,胡秉磊,尹顺利. 渤海油田钻柱松扣关键技术. 石油地质与工程. 2021(05): 76-79 .
    3. 罗伟,林永茂,董海峰,伍强. 元坝气田井筒堵塞物清除技术. 石油钻探技术. 2018(05): 109-114 . 本站查看
    4. 邓昌松,李兴亭,冯少波,宋周成,刘正. 碳酸盐岩地层漏失水平井卡钻泡酸解卡技术. 钻采工艺. 2018(05): 28-31+8-9 .
    5. 付继彤. 水平井高压水射流泡沫酸洗工艺应用. 油气地质与采收率. 2015(05): 123-126 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (75) PDF downloads (30) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return