Citation: | HUO Hongbo, LIU Dongdong, TAO Lin, et al. Integrity challenges and countermeasures of the offshore CCUS based on CO2-EOR [J]. Petroleum Drilling Techniques,2023, 51(2):74-80. DOI: 10.11911/syztjs.2023009 |
CO2 can be used to improve the recovery efficiency of offshore oil and gas fields. Not only does it increase the utilization rate of oil and gas resources but it also helps capture and store regional CO2. The long-term safety of offshore oil and gas wells is a key factor for carbon capture, utilization, and storage(CCUS), but corresponding theories and technologies need to be improved. By analyzing and summarizing key technologies of CCUS wellbore integrity in offshore oil and gas fields both in China and abroad, the technical challenges that restrict CCUS wellbore integrity in shallow offshore oil fields were analyzed. The studies covered cementing of carbon sequestration wells, research and prevention of carbon sequestration casing corrosion, carbon sequestration wellbore plugging caused by water-rock reaction, wellbore environment monitoring and diagnosis, and other technologies. In addition, the development prospect of CCUS in shallow offshore oil and gas fields was predicted in consideration of the national target of carbon peaking and carbon neutrality goals, enhanced oil recovery(EOR)/enhanced gas recovery(EGR) technology requirements, and experience of new domestic and foreign technologies. Although China is preliminarily capable of carrying out offshore CCUS, technology research should be strengthened in the aspects of high-strength CO2 corrosion-resistant cement slurry systems, low-cost anticorrosive material selections, high-efficient wellbore descaling and plugging processes, CO2 leakage monitoring technology, and three-dimensional stress field research of underground traps, so as to improve its CCUS application level.
[1] |
王敏生,姚云飞. 碳中和约束下油气行业发展形势及应对策略[J]. 石油钻探技术,2021,49(5):1–6.
WANG Minsheng, YAO Yunfei. Development situation and countermeasures of the oil and gas industry facing the challenge of carbon neutrality[J]. Petroleum Drilling Techniques, 2021, 49(5): 1–6.
|
[2] |
WINSLOW D. Industry experience with CO2 for enhanced oil recovery[R]. Richmond: Chevron, 2012.
|
[3] |
李杉. 大庆油田徐深气田耐CO2腐蚀套管优选[J]. 石油钻探技术,2016,44(6):55–59.
LI Shan. Casing optimization for CO2 corrosion resistance in the Xushen Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(6): 55–59.
|
[4] |
江怀友,沈平平,卢颖,等. CO2提高世界油气资源采收率现状研究[J]. 特种油气藏,2010,17(2):5–10.
JIANG Huaiyou, SHEN Pingping, LU Ying, et al. Present situation of enhancing hydrocarbon recovery factor by CO2[J]. Special Oil & Gas Reservoirs, 2010, 17(2): 5–10.
|
[5] |
吴俊霞,伊伟锴,孙鹏,等. 文23储气库封堵井完整性保障技术[J]. 石油钻探技术,2022,50(5):57–62. doi: 10.11911/syztjs.2022027
WU Junxia, YI Weikai, SUN Peng, et al. Integrity assurance technologies for plugged wells in Wen 23 Gas Storage[J]. Petroleum Drilling Techniques, 2022, 50(5): 57–62. doi: 10.11911/syztjs.2022027
|
[6] |
宋闯,张晓诚,谢涛,等. 渤海 “三高” 气井环空早期圈闭压力预测[J]. 石油学报,2022,43(5):694–707.
SONG Chuang, ZHANG Xiaocheng, XIE Tao, et al. Prediction of early annular trap pressure of three-high gas wells in Bohai Sea[J]. Acta Petrolei Sinica, 2022, 43(5): 694–707.
|
[7] |
罗二辉,胡永乐,李保柱,等. 中国油气田注CO2提高采收率实践[J]. 特种油气藏,2013,20(2):1–7.
LUO Erhui, HU Yongle, LI Baozhu, et al. Practices of CO2 EOR in China[J]. Special Oil & Gas Reservoirs, 2013, 20(2): 1–7.
|
[8] |
蔡珺君,张毅,董翱,等. 提升气藏工程矿场应用水平的“1+4”模式[J]. 断块油气田,2022,29(3):364–372.
CAI Junjun, ZHANG Yi, DONG Ao, et al. “1+4” mode to improve the field application level of gas reservoir engineering[J]. Fault-Block Oil & Gas Field, 2022, 29(3): 364–372.
|
[9] |
刘雪雁,李鹏春,周蒂,等. 南海北部珠江口盆地惠州21-1油田CO2-EOR与碳封存潜力快速评价[J]. 海洋地质前沿,2017,33(3):56–65.
LIU Xueyan, LI Pengchun, ZHOU Di, et al. Quick assessment of CO2-EOR and CO2 sequestration potential in Huizhou 21-1 Oilfield, Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology Frontiers, 2017, 33(3): 56–65.
|
[10] |
张志超,柏明星,陈巧珍. 二氧化碳埋存井筒的腐蚀行为影响因素[J]. 腐蚀与防护,2021,42(4):54–57.
ZHANG Zhichao, BAI Mingxing, CHEN Qiaozhen. Influencing factors of corrosion behavior of carbon dioxide storage wellbore[J]. Corrosion and Protection, 2021, 42(4): 54–57.
|
[11] |
张智,李炎军,张超,等. 高温含CO2气井的井筒完整性设计[J]. 天然气工业,2013,33(9):79–86.
ZHANG Zhi, LI Yanjun, ZHANG Chao, et al. Wellbore integrity design of high-temperature gas wells containing CO2[J]. Natural Gas Industry, 2013, 33(9): 79–86.
|
[12] |
郭建强,文冬光,张森琦,等. 中国二氧化碳地质储存潜力评价与示范工程[J]. 中国地质调查,2015,2(4):36–46. doi: 10.19388/j.zgdzdc.2015.04.007
GUO Jianqiang, WEN Dongguang, ZHANG Senqi, et al. Potential evaluation and demonstration project of CO2 geological storage in China[J]. Geological Survey of China, 2015, 2(4): 36–46. doi: 10.19388/j.zgdzdc.2015.04.007
|
[13] |
李琦,蔡博峰,陈帆,等. 二氧化碳地质封存的环境风险评价方法研究综述[J]. 环境工程,2019,37(2):13–21. doi: 10.13205/j.hjgc.201902003
LI Qi, CAI Bofeng, CHEN Fan, et al. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering, 2019, 37(2): 13–21. doi: 10.13205/j.hjgc.201902003
|
[14] |
刁玉杰,张森琦,郭建强,等. 深部咸水层二氧化碳地质储存场地选址储盖层评价[J]. 岩土力学,2012,33(8):2422–2428. doi: 10.3969/j.issn.1000-7598.2012.08.028
DIAO Yujie, ZHANG Senqi, GUO Jianqiang, et al. Reservoir and caprock evaluation of CO2 geological storage site selection in deep saline aquifers[J]. Rock and Soil Mechanics, 2012, 33(8): 2422–2428. doi: 10.3969/j.issn.1000-7598.2012.08.028
|
[15] |
杨俊哲,王振荣,许峰,等. 二氧化碳封存异地定向持续监测技术研究[J]. 煤炭工程,2020,52(9):37–41.
YANG Junzhe, WANG Zhenrong, XU Feng, et al. Continuous remote monitoring with directional drilling for CO2 geological storage[J]. Coal Engineering, 2020, 52(9): 37–41.
|
[16] |
薄其众,戴涛,杨勇,等. 胜利油田樊142块特低渗透油藏CO2驱油储层压力动态变化研究[J]. 石油钻探技术,2016,44(6):93–98.
BO Qizhong, DAI Tao, YANG Yong, et al. Research on the changes in formation pressure performance of CO2 flooding in the ultra-low permeability oil reservoir: Block Fan 142 of the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(6): 93–98.
|
[17] |
谢关宝,滕春鸣,柳华杰. 盐岩蠕变对水泥环气密封完整性影响规律研究[J]. 石油钻探技术,2022,50(2):78–84. doi: 10.11911/syztjs.2021113
XIE Guanbao, TENG Chunming, LIU Huajie. Study on the influence of salt rock creep on the integrity of cement sheath gas seals[J]. Petroleum Drilling Techniques, 2022, 50(2): 78–84. doi: 10.11911/syztjs.2021113
|
[18] |
刘伟,蒲晓林,白小东,等. 油田硫化氢腐蚀机理及防护的研究现状及进展[J]. 石油钻探技术,2008,36(1):83–86. doi: 10.3969/j.issn.1001-0890.2008.01.023
LIU Wei, PU Xiaolin, BAI Xiaodong, et al. Development of hydrogen sulfide corrosion and prevention[J]. Petroleum Drilling Techniques, 2008, 36(1): 83–86. doi: 10.3969/j.issn.1001-0890.2008.01.023
|
[19] |
万浩东,杨远光,邓天安,等. 适用于储气库固井自愈合水泥浆体系[J]. 油田化学,2019,36(1):53–57. doi: 10.19346/j.cnki.1000-4092.2019.01.011
WAN Haodong, YANG Yuanguang, DENG Tianan, et al. A self-healing cement slurry system for gas storage cementing[J]. Oilfield Chemistry, 2019, 36(1): 53–57. doi: 10.19346/j.cnki.1000-4092.2019.01.011
|
[20] |
刘子玉. CO2对油井水泥石腐蚀规律及控制机制研究[D]. 大庆: 东北石油大学, 2020.
LIU Ziyu. Study on corrosion law and control mechanism of oil well cement paste by CO2[D]. Daqing: Northeast Petroleum University, 2020.
|
[21] |
彭鑫岭,蒋光迹,彭松,等. 普光高含H2S气田硫沉积规律及其对开发的影响[J]. 断块油气田,2022,29(4):455–462.
PENG Xinling, JIANG Guangji, PENG Song, et al. The law of sulfur deposition and its effect on production in Puguang high H2S gas reservoir[J]. Fault-Block Oil & Gas Field, 2022, 29(4): 455–462.
|
[22] |
汤少兵,李宗要,谢承斌,等. 防CO2腐蚀水泥浆在神华CCS示范项目中的应用[J]. 钻井液与完井液,2011,28(增刊1):17–19.
TANG Shaobing, LI Zongyao, XIE Chengbin, et al. Application of CO2 corrosion resistance cement slurry in Shenhua CCS demonstration project[J]. Drilling Fluid & Completion Fluid, 2011, 28(supplement1): 17–19.
|
[23] |
武治强,岳家平,谢仁军,等. 南海超高温耐腐蚀防气窜固井水泥浆体系研究[J]. 石油化工应用,2021,40(9):47–51.
WU Zhiqiang, YUE Jiaping, XIE Renjun, et al. Study on ultra high temperature anti corrosion cement slurry system in South China Sea[J]. Petrochemical Industry Application, 2021, 40(9): 47–51.
|
[24] |
吴柏志,张怀兵. 满深1井碳酸盐岩地层自愈合水泥浆固井技术[J]. 石油钻探技术,2021,49(1):67–73. doi: 10.11911/syztjs.2020071
WU Bozhi, ZHANG Huaibing. Cementing technology of a self-healing cement slurry in the carbonate formations in the Well Manshen 1[J]. Petroleum Drilling Techniques, 2021, 49(1): 67–73. doi: 10.11911/syztjs.2020071
|
[25] |
席岩,李方园,王松,等. 利用预应力固井方法预防水泥环微环隙研究[J]. 特种油气藏,2021,28(6):144–150.
XI Yan, LI Fangyuan, WANG Song, et al. Study on prevention of micro-annulus in cement sheath by prestressed cementing method[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 144–150.
|
[26] |
KUTCHKO B G, STRAZISAR B R, DZOMBAK D A, et al. Degradation of well cement by CO2 under geologic sequestration conditions[J]. Environmental Science & Technology, 2007, 41(13): 4787–4792.
|
[27] |
CAREY J W. Geochemistry of wellbore integrity in CO2 sequestration: Portland cement-steel-brine-CO2 interactions[J]. Reviews in Mineralogy & Geochemistry, 2013, 77(1): 505–539.
|
[28] |
谢尚贤,颜五和. 大庆油田应用CO2非混相驱油的可行性和技术界限研究[J]. 大庆石油地质与开发,1986,5(4):55–62.
XIE Shangxian, YAN Wuhe. Study on the feasibility of CO2 immiscible flooding and its technical limitations in Daqing Oil Field[J]. Petroleum Geology & Oilfield Development in Daqing, 1986, 5(4): 55–62.
|
[29] |
孙建波,靳亚鹏,孙冲,等. H2S-CO2环境下低铬钢的硫化物应力腐蚀开裂行为[J]. 表面技术,2016,45(2):1–7.
SUN Jianbo, JIN Yapeng, SUN Chong, et al. Sulfide stress corrosion cracking behavior of low-Cr steel in H2S-CO2 environment[J]. Surface Technology, 2016, 45(2): 1–7.
|
[30] |
张智,宋闯,冯潇霄,等. 井筒屏障完整性及其优化设计:以CO2吞吐井为例[J]. 石油钻采工艺,2019,41(3):318–328.
ZHANG Zhi, SONG Chuang, FENG Xiaoxiao, et al. Wellbore barrier integrity and design optimization: A case study on CO2 huff and puff well[J]. Oil Drilling & Production Technology, 2019, 41(3): 318–328.
|
[31] |
吕祥鸿,梁伟,计玲,等. 高温条件下几种耐蚀合金管柱材料的抗腐蚀性能对比分析[J]. 西安石油大学学报(自然科学版),2018,33(5):101–106.
LYU Xianghong, LIANG Wei, JI Ling, et al. Comparative analysis of corrosion resistance of several corrosion-resistant alloy pipe string materials under high temperature[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2018, 33(5): 101–106.
|
[32] |
初纬,沈吉云,杨云飞,等. 连续变化内压下套管-水泥环-围岩组合体微环隙计算[J]. 石油勘探与开发,2015,42(3):379–385. doi: 10.1016/S1876-3804(15)30028-8
CHU Wei, SHEN Jiyun, YANG Yunfei, et al. Calculation of micro-annulus size in casing-cement sheath-formation system under continuous internal casing pressure change[J]. Petroleum Exploration and Development, 2015, 42(3): 379–385. doi: 10.1016/S1876-3804(15)30028-8
|
[33] |
TENTHOREY E, VIDAL-GILBERT S, BACKÉ G, et al. Modelling the geomechanics of gas storage: A case study from the Iona gas field, Australia[J]. International Journal of Greenhouse Gas Control, 2013, 13: 138–148. doi: 10.1016/j.ijggc.2012.12.009
|
[34] |
SUN Junchang, WANG Jieming, ZHENG Dewen, et al. Regional scale 3D geomechanical modeling for evaluating caprock integrity and fault leakage potential during underground gas storage operations in a produced field[R]. SPE-186053-MS, 2017.
|
[35] |
戴彩丽,丁行行,于志豪,等. CO2和地层水对储层物性的影响研究进展[J]. 油田化学,2019,36(4):741–747.
DAI Caili, DING Xingxing, YU Zhihao, et al. Research progress on the influence of CO2 and formation water on reservoir physical properties[J]. Oilfield Chemistry, 2019, 36(4): 741–747.
|
1. |
佘朝毅. 四川盆地超深层钻完井技术进展及其对万米特深井的启示. 天然气工业. 2024(01): 40-48 .
![]() | |
2. |
张福铭,肖伟,朱思佳,石礼岗,赵军. 超高温高密度防腐防窜水泥浆. 钻井液与完井液. 2024(04): 506-514 .
![]() | |
3. |
徐大伟,汪晓静,徐春虎,魏浩光,常连玉. 且深1井盐层尾管超高温高密度固井水泥浆技术. 钻井液与完井液. 2024(05): 622-629 .
![]() | |
4. |
刘书杰,武治强,吴怡,侯铎,张智. 深水深井高温高压水泥石固化养护及制备方法研究. 石油钻采工艺. 2022(03): 291-296 .
![]() | |
5. |
邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望. 天然气工业. 2022(12): 82-94 .
![]() | |
6. |
李成全,何世明,张平. 磨溪-高石梯构造超深定向井固井水泥浆技术. 石油与天然气化工. 2020(02): 73-79 .
![]() | |
7. |
杨仲涵,罗鸣,陈江华,许发宾,徐靖. 莺歌海盆地超高温高压井挤水泥承压堵漏技术. 石油钻探技术. 2020(03): 47-51 .
![]() |