ZHENG Yufei, LI Xiang, XU Jingliang, YU Meng. In-Situ CO2 Generation Technology in Bohai P Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 108-112. DOI: 10.11911/syztjs.2020015
Citation: ZHENG Yufei, LI Xiang, XU Jingliang, YU Meng. In-Situ CO2 Generation Technology in Bohai P Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 108-112. DOI: 10.11911/syztjs.2020015

In-Situ CO2 Generation Technology in Bohai P Oilfield

More Information
  • Received Date: September 12, 2019
  • Revised Date: December 11, 2019
  • Available Online: March 08, 2020
  • In order to solve the problem of low water flooding development efficiency caused by strong reservoir heterogeneity, high water injection intensity, injected water influx and ineffective circulation in the Bohai P Oilfield, a study of in-situ CO2 generation technology was carried out. Firstly, the optimal gas generation system was selected by evaluating gas generation efficiency. Then, the foaming agent and blocking agent were screened by the Waring-Blender method and sandpack column flow experiment. Laboratory test results showed that gas generation efficiency could reach 96.2% when the gas system was blowing agent A + gas release agent D. The optimal foaming agent system was 0.2% foaming agent 2 + 0.1% foaming agent 5. The foaming volume was 740 mL and the half-life of dissolve-out liquid could be maintained for 219 seconds. When blocking agent 1 was added in the foaming system, the plugging rate could be maintained above 90% in the sandpack column with a permeability of 2 000-10 000 mD. The in-situ CO2 generation technology had been used in 15 injector producer pairs of the Bohai P Oilfield, resulting in the enhancement of accumulative oil recovery of 33 413 m3 by injecting 69 986 m3 of CO2 in total, with the effective rate reaching 100% and effective period up to 5 months, which indicated that in-situ CO2 generation technology had good applicability in Bohai P Oilfield and dissolves the problems existing in the water flood development of this field.

  • [1]
    梁丹,吕鑫,蒋珊珊,等. 渤海油田分级组合深部调剖技术[J]. 石油钻探技术, 2015, 43(2): 104–109.

    LIANG Dan, LYU Xin, JIANG Shanshan, et al. The technology of classified combination of deep profile control in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(2): 104–109.
    [2]
    张博,徐景亮,李翔,等. 层内生成CO2技术提高采收率机理研究及应用[J]. 西安石油大学学报(自然科学版), 2017, 32(3): 94–98.

    ZHANG Bo, XU Jingliang, LI Xiang, et al. Mechanism research and application of enhancing oil recovery by in-situ CO2 generating technology[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2017, 32(3): 94–98.
    [3]
    杨寨,郑玉飞. 渤海油田多轮次层内生成CO2调驱效果优化研究[J]. 断块油气田, 2019, 26(1): 123–126.

    YANG Zhai, ZHENG Yufei. Study on multi-round profile control effect optimization of in-situ carbon dioxide generation in Bohai Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(1): 123–126.
    [4]
    薄其众, 戴涛,杨勇,等. 胜利油田樊142块特低渗透油藏CO2驱油储层压力动态变化研究[J]. 石油钻探技术, 2016, 44(6): 93–98.

    BO Qizhong, DAI Tao, YANG Yong, et al. Research on the changes in formation pressure performance of CO2 flooding in the ultra-low permeability oil reservoir: Block Fan 142 of the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(6): 93–98.
    [5]
    王飞,李兆敏,李松岩,等. 自生热泡沫体系在多孔介质中协同作用机制[J]. 中国石油大学学报(自然科学版), 2016, 40(3): 130–135.

    WANG Fei, LI Zhaomin, LI Songyan, et al. Mechanism study of a chem-pyrogenic-foam system in porous media[J]. Journal of China University of Petroleum(Edition of Natural Science), 2016, 40(3): 130–135.
    [6]
    JIA Xiaofei, MA Kuiqian, LIU Yingxian, et al. Enhance heavy oil recovery by in-situ carbon dioxide generation and application in China offshore oilfield[R]. SPE 165215, 2013.
    [7]
    GUMERSKY Kh Kh, DZHAFAROV I S, SHAKHVERDIEV A Kh, et al. In-situ generation of carbon dioxide: new way to increase oil recovery[R]. SPE 65170, 2000.
    [8]
    SHIAU B J B, HSU T, ROBERT B L, et al. Improved chemical flood efficiency by in situ CO2 generation[R]. SPE 129893, 2010.
    [9]
    邓建华,赵健,庄羽竹,等. 层内自生CO2吞吐技术室内研究[J]. 内蒙古石油化工, 2013(19): 101–103.

    DENG Jianhua, ZHAO Jian, ZHUANG Yuzhu, et al. Laboratory study on in-layer self-generating CO2 huff and puff technology[J]. Inner Mongulia Petrochemical Industry, 2013(19): 101–103.
    [10]
    赵仁保,岳湘安,侯吉瑞,等. 自生气凝胶泡沫体系单液法深部调剖剂可行性研究[J]. 油田化学, 2005, 22(4): 362–365. doi: 10.3969/j.issn.1000-4092.2005.04.020

    ZHAO Renbao, YUE Xiang’an, HOU Jirui, et al. Feasibility study of authigenic gas gelling/foaming fluid as indepth profiling agent injected in single slug[J]. Oilfield Chemistry, 2005, 22(4): 362–365. doi: 10.3969/j.issn.1000-4092.2005.04.020
    [11]
    张国萍,肖良,胡艳霞,等. 层内生气提高采收率技术在中原断块油田的应用[J]. 油气地质与采收率, 2004, 11(5): 60–61. doi: 10.3969/j.issn.1009-9603.2004.05.021

    ZHANG Guoping, XIAO Liang, HU Yanxia, et al. Applications of in situ gas generating for enhanced oil recovery to Zhongyuan faulted block oilfield[J]. Petroleum Geology and Recovery Efficiency, 2004, 11(5): 60–61. doi: 10.3969/j.issn.1009-9603.2004.05.021
    [12]
    李文轩,秦延才,毛源,等. 一种新型地下自生泡沫酸化技术的研究与应用[J]. 钻采工艺, 2016, 39(4): 35–37. doi: 10.3969/J.ISSN.1006-768X.2016.04.11

    LI Wenxuan, QIN Yancai, MAO Yuan, et al. Research and application of a new type of underground self-generating foam acidification technology[J]. Drilling & Production Technology, 2016, 39(4): 35–37. doi: 10.3969/J.ISSN.1006-768X.2016.04.11
  • Related Articles

    [1]CHEN Zuo, LI Shuangming, CHEN Zan, WANG Haitao. Hydraulic Fracture Initiation and Extending Tests in Deep Shale Gas Formations and Fracturing Design Optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70-76. DOI: 10.11911/syztjs.2020060
    [2]YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
    [3]Tian Shouceng, Chen Liqiang, Sheng Mao, Li Gensheng, Liu Qingling. Modeling of Fracture Initiation for Staged Hydraulic Jetting Fracturing[J]. Petroleum Drilling Techniques, 2015, 43(5): 31-36. DOI: 10.11911/syztjs.201505006
    [4]Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015
    [5]Liu Lihong, Wang Juanjuan, Gao Chunhua. Research and Application of a Multicomponent Modified Instant Guar Fracturing Fluid[J]. Petroleum Drilling Techniques, 2015, 43(3): 116-119. DOI: 10.11911/syztjs.201503021
    [6]Peng Chunyao. Mechanism of Interaction between Hydraulic Fractures and Weak Plane in Layered Shale[J]. Petroleum Drilling Techniques, 2014, 42(4): 32-36. DOI: 10.3969/j.issn.1001-0890.2014.04.006
    [7]Shao Shangqi, Tian Shouceng, Li Gensheng, He Zhenguo. Fracture Spacing Optimization for Fracture-Network Fracturing in Horizontal Wells[J]. Petroleum Drilling Techniques, 2014, 42(1): 86-90. DOI: 10.3969/j.issn.1001-0890.2014.01.017
    [8]Jin Zhirong, Zhang Huali, Zhou Jidong, Wang Jintao. Research and Application of Massive Combined Sand Fracturing for Thin Interbedded Reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(6): 86-89. DOI: 10.3969/j.issn.1001-0890.2013.06.017
    [9]An Fengjun, Zhao Anjun, Zhou Huizhi, Duan Guifu. Effect Analysis of Secondary Sand Fracturing Using Four-Dimensional Seismic Imaging of Micro-Fractures[J]. Petroleum Drilling Techniques, 2013, 41(5): 98-101. DOI: 10.3969/j.issn.1001-0890.2013.05.019
    [10]Xu Peng, Liu Xinyun, Shi Libao. Numerical Simulation for the Effect of Ground Stress on Explosive Fracturing[J]. Petroleum Drilling Techniques, 2013, 41(1): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.01.013
  • Cited by

    Periodical cited type(16)

    1. 邓华根,韩成,王应好. 海上页岩油探井测试大规模压裂技术及实践. 化学工程与装备. 2025(02): 38-42 .
    2. 刘臣,卢海兵,陈钊,葛婧楠,孙挺. 大段多簇压裂改造技术优化与页岩气储层分析应用. 粘接. 2024(04): 121-124 .
    3. 王遵察,程万,艾昆,胡清海,石育钊. 井工厂井网部署与压裂模式发展现状与展望. 钻探工程. 2024(03): 9-19 .
    4. 戴佳成,李根生,孙耀耀,李敬彬,王天宇. 基于水平井的径向井开采页岩油产能模拟和参数分析. 石油科学通报. 2024(04): 604-616 .
    5. 杨南鹏,范雨航,高彬,张世锋. 暂堵技术在致密砂岩气藏压裂中的应用. 能源与环保. 2023(01): 168-174 .
    6. 邹龙庆,何怀银,杨亚东,龚新伟,肖剑锋,苌北. 页岩气水平井暂堵球运移特性数值模拟研究. 石油钻探技术. 2023(05): 156-166 . 本站查看
    7. 侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势. 石油钻探技术. 2023(05): 66-77 . 本站查看
    8. 戴佳成,王天宇,田康健,李敬彬,田守嶒,李根生. 页岩油储层径向井立体压裂产能预测模型研究. 石油科学通报. 2023(05): 588-599 .
    9. 滕卫卫,古小龙,王博,张谷畅,吴宝成,李建民,葛洪魁. 段内多簇暂堵压裂中暂堵球直径优化研究. 钻采工艺. 2023(05): 61-67 .
    10. 董小卫,田志华,李一强,汪志,韩光耀,唐家财,刘帅. 水平井桥塞分段压裂管外光纤监测技术. 石油钻采工艺. 2023(05): 649-654 .
    11. 陈志明,赵鹏飞,曹耐,廖新维,王佳楠,刘辉. 页岩油藏压裂水平井压–闷–采参数优化研究. 石油钻探技术. 2022(02): 30-37 . 本站查看
    12. 蔡萌,唐鹏飞,魏旭,刘宇,张浩,张宝岩,耿丹丹. 松辽盆地古龙页岩油复合体积压裂技术优化. 大庆石油地质与开发. 2022(03): 156-164 .
    13. 樊平天,刘月田,冯辉,周东魁,李平,周丰,秦静,余维初,史黎岩. 致密油新一代驱油型滑溜水压裂液体系的研制与应用. 断块油气田. 2022(05): 614-619 .
    14. 王成俊,张磊,展转盈,倪军,高怡文,王维波. 基于裂缝介质转变为多孔颗粒介质的调剖方法与矿场应用. 断块油气田. 2022(05): 709-713 .
    15. 李臻,李真,程嘉瑞,崔璐. 高速射流孔眼冲刷腐蚀扩孔规律试验研究. 石油化工腐蚀与防护. 2022(05): 1-5+41 .
    16. 李臻,李真,程嘉瑞,崔璐. 高速射流孔眼冲刷腐蚀扩孔规律实验研究. 山东化工. 2022(20): 1-4+8 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (956) PDF downloads (43) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return