Citation: | FANG Haoqing, ZHAO Bing, WANG Wenzhi, ZHOU Zhou. Simulation Study on the Range of Diversion in Targeted Fracturing of Prefabricated Fractures in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 97-103. DOI: 10.11911/syztjs.2019048 |
Oil and gas resources of the ultra-deep carbonate reservoirs in the Tahe Oilfield occur mainly in natural fractures and cavities, and the application of a targeted fracturing technology for prefabricated fractures can control the fracture diversion and improve oil and gas production. By utilizing the corrected resistance reduction ratio method to calculate string resistance, combining the unstable seepage theory to calculate pressure change in a fracture, and applying the displacement discontinuity method to calculate fracture propagation and diversion, it is able to establish the integrated model of fracture propagation. Through computational analysis of parameters such as the fracture propagation direction/angle and extension length of prefabricated fracture-bearing targeted fracturing, and correlating the pumping parameters and the diverting distance of hydraulic fracture, the accuracy and validity of this model are validated by virtue of finite element method and physical simulation experiments. The study results showed that the parameters of fracturing fluid viscosity, prefabricated fracture angle, in-situ stress difference and formation rock elastic modulus are negatively correlated with the diverting distance of hydraulic fracture. In this case, the length of prefabricated fracture is positively correlated with the diverting distance; the preferable pumping flow rate shall be adopted to achieve the optimal diverting distance. The simulation results of targeted fracturing prefabricated fracture diverting technology provided the theoretical guidance and data support for the efficient development of ultra-deep carbonate fracture and cavity reservoirs in the Tahe Oilfield.
[1] |
张广清,陈勉,赵艳波. 新井定向射孔转向压裂裂缝起裂与延伸机理研究[J]. 石油学报, 2008, 29(1): 116–119. doi: 10.3321/j.issn:0253-2697.2008.01.022
ZHANG Guangqing, CHEN Mian, ZHAO Yanbo. Study on initiation and propagation mechanism of fractures in oriented perforation of new wells[J]. Acta Petrolei Sinica, 2008, 29(1): 116–119. doi: 10.3321/j.issn:0253-2697.2008.01.022
|
[2] |
张广清,陈勉. 水平井水力裂缝非平面扩展研究[J]. 石油学报, 2005, 26(3): 95–97, 101. doi: 10.3321/j.issn:0253-2697.2005.03.021
ZHANG Guangqing, CHEN Mian. Non-planar propagation of hydraulic fracture near horizontal wellbore[J]. Acta Petrolei Sinica, 2005, 26(3): 95–97, 101. doi: 10.3321/j.issn:0253-2697.2005.03.021
|
[3] |
ABASS H H, HEDAYATI S, MEADOWS D L. Nonplanar fracture propagation from a horizontal wellbore: experimental study[J]. SPE Production & Facilities, 1996, 11(3): 133–137.
|
[4] |
张洪新,冯胜利,修书志. 水力压裂裂缝转向数值模拟研究[J]. 石油天然气学报, 2009, 31(2): 123–125. doi: 10.3969/j.issn.1000-9752.2009.02.030
ZHANG Hongxin, FENG Shengli, XIU Shuzhi. Numerical simulation of hydraulic fracturing fracture steering[J]. Journal of Oil and Gas Technology, 2009, 31(2): 123–125. doi: 10.3969/j.issn.1000-9752.2009.02.030
|
[5] |
黄高传,刘炜,王晓东. 裂缝转向压裂工艺技术在新疆油田的应用[J]. 新疆石油科技, 2008, 18(3): 21–24.
HUANG Gaochuan, LIU Wei, WANG Xiaodong. Application of fracture steering fracturing technology in Xinjiang Oilfield[J]. Xinjiang Petroleum Science and Technology, 2008, 18(3): 21–24.
|
[6] |
WRIGHT C A, WEIJERS L. Hydraulic fracture reorientation: does it occur? does it matter?[J]. The Leading Edge, 2001, 20(10): 1185–1189. doi: 10.1190/1.1487252
|
[7] |
卢运虎,陈勉,安生. 页岩气井脆性页岩井壁裂缝扩展机理[J]. 石油钻探技术, 2012, 40(4): 13–16. doi: 10.3969/j.issn.1001-0890.2012.04.003
LU Yunhu, CHEN Mian, AN Sheng. Brittle shale wellbore fracture propagation mechanism[J]. Petroleum Drilling Techniques, 2012, 40(4): 13–16. doi: 10.3969/j.issn.1001-0890.2012.04.003
|
[8] |
陈勉. 页岩气储层水力裂缝转向扩展机制[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 88–94. doi: 10.3969/j.issn.1673-5005.2013.05.013
CHEN Mian. Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(5): 88–94. doi: 10.3969/j.issn.1673-5005.2013.05.013
|
[9] |
刘合, 张广明, 张劲, 等.油井水力压裂摩阻计算和井口压力预测[J].岩石力学与工程学报, 2010, 29(增刊1): 2833–2839.
LIU He, ZHANG Guangming, ZHANG Jin, et al. Friction loss calculation and surface pressure prediction in oil well hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(supplement 1): 2833–2839.
|
[10] |
EI-RABBA A M, SHAH S N, LORD D L. New perforation pressure-loss correlations for limited-entry fracturing treatments[R]. SPE 38373, 1997.
|
[11] |
廖新维, 沈平平.现代试井分析[M].北京: 石油工业出版社, 2002: 171–175.
LIAO Xinwei, SHEN Pingping. Modern well test analysis[M]. Beijing: Petroleum Industry Press, 2002: 171–175.
|
[12] |
刘光廷,涂金良,张镜剑. 位移不连续边界元法解多裂纹体的裂缝扩展[J]. 清华大学学报(自然科学版), 1996, 36(1): 59–64.
LIU Guangting, TU Jinliang, ZHANG Jingjian. Solution for crack propagation in multi-crack body by displacement-discontinuous boundary element method[J]. Journal of Tsinghua University (Science and Technology), 1996, 36(1): 59–64.
|
[13] |
朱万成,唐春安. 岩板中混合裂纹扩展过程的数值模拟[J]. 岩土工程学报, 2000, 22(2): 231–234. doi: 10.3321/j.issn:1000-4548.2000.02.018
ZHU Wancheng, TANG Chun’an. Numerical simulation on the propagation processes of mixed mode cracks in rock plates[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 231–234. doi: 10.3321/j.issn:1000-4548.2000.02.018
|
[14] |
何丽萍,韩锋刚,李文宏,等. 多级燃速爆燃气体压裂裂缝扩展耦合作用分析[J]. 石油钻探技术, 2009, 37(2): 66–69. doi: 10.3969/j.issn.1001-0890.2009.02.018
HE Liping, HAN Fenggang, LI Wenhong, et al. Analysis of fracture extension driven by detonation gas of multi-pulse combustion rate[J]. Petroleum Drilling Techniques, 2009, 37(2): 66–69. doi: 10.3969/j.issn.1001-0890.2009.02.018
|
[15] |
田守嶒,陈立强,盛茂,等. 水力喷射分段压裂裂缝起裂模型研究[J]. 石油钻探技术, 2015, 43(5): 31–36.
TIAN Shouceng, CHEN Liqiang, SHENG Mao, et al. Modeling of fracture initiation for staged hydraulic jetting fracturing[J]. Petro-leum Drilling Techniques, 2015, 43(5): 31–36.
|
1. |
王川,陈秋帆,夏勇. 海底泥浆举升钻井系统钻遇天然气水合物时的动态风险分析. 安全与环境学报. 2024(02): 479-487 .
![]() | |
2. |
翟诚,吴迪,秦冬冬. 天然气水合物注热分解诱发储层变形破坏的正交数值模拟研究. 特种油气藏. 2024(02): 112-119 .
![]() | |
3. |
刘芳,冯馨,孙皓宇,张旭辉. 水合物分解中深水基础抗拔性能模型试验研究. 防灾减灾工程学报. 2023(02): 359-365 .
![]() | |
4. |
贺保卫,马志宇,崔海朋,杜鹏. 基于Unity 3D的可燃冰开采环境监测模拟系统设计. 计算机应用与软件. 2023(08): 121-125+154 .
![]() | |
5. |
吴艳辉,代锐,张磊,朱志潜,高禹,刘楷,徐鹏,张雨. 深水井筒海水聚合物钻井液水合物生成抑制与堵塞物处理方法. 钻井液与完井液. 2023(04): 415-422 .
![]() | |
6. |
赵凯,李润森,冯永存,高伟,张振伟,窦亮彬,毕刚. 非均匀地应力场下水合物储层水平井井周塑性区分布. 中南大学学报(自然科学版). 2022(03): 952-962 .
![]() | |
7. |
王磊,杨进,李莅临,胡志强,柯珂,臧艳彬,孙挺. 深水含水合物地层钻井井口稳定性研究. 岩土工程学报. 2022(12): 2312-2318 .
![]() | |
8. |
王志刚,李小洋,张永彬,尹浩,胡晨,梁金强,黄伟. 海域非成岩天然气水合物储层改造方法分析. 钻探工程. 2021(06): 32-38 .
![]() | |
9. |
马永乐,张勇,刘晓栋,侯岳,杨金龙,宋本岭,刘涛,李荔. 海域天然气水合物低温抑制性钻井液体系. 钻井液与完井液. 2021(05): 544-551+559 .
![]() | |
10. |
王偲,谢文卫,张伟,陈靓,陈浩文. RMR技术在海域天然气水合物钻探中的适应性分析. 探矿工程(岩土钻掘工程). 2020(02): 17-23 .
![]() | |
11. |
史静怡,樊建春,武胜男,李磊. 深水井筒天然气水合物形成预测及风险评价. 油气储运. 2020(09): 988-996 .
![]() | |
12. |
李莅临,杨进,路保平,柯珂,王磊,陈柯锦. 深水水合物试采过程中地层沉降及井口稳定性研究. 石油钻探技术. 2020(05): 61-68 .
![]() | |
13. |
李子丰,韩杰. 海底天然气水合物开采的环境安全性探讨. 石油钻探技术. 2019(03): 127-132 .
![]() | |
14. |
李庆超,程远方,邵长春. 允许适度坍塌的水合物储层最低钻井液密度. 断块油气田. 2019(05): 657-661 .
![]() | |
15. |
牛洪波,于政廉,孙菁,徐加放. 天然气水合物动力学抑制剂与水分子相互作用研究. 石油钻探技术. 2019(04): 29-34 .
![]() | |
16. |
迟咏梅,徐松杰,曹玉廷,董坚. 新型两亲性聚酰胺的合成及性质. 应用化学. 2017(03): 269-275 .
![]() | |
17. |
庞维新,李清平,程艳,王炳明. 水合物堵塞治理工具和方法研究. 石油机械. 2016(03): 68-72 .
![]() | |
18. |
光新军,王敏生. 海洋天然气水合物试采关键技术. 石油钻探技术. 2016(05): 45-51 .
![]() | |
19. |
孙小辉,孙宝江,王志远,王金堂. 超临界CO_2钻井井筒水合物形成区域预测. 石油钻探技术. 2015(06): 13-19 .
![]() |