Citation: | ZHU Zuyang, NI Weining, ZHANG Wei, MI Jintai, ZHENG Yiting. The Development of an Integrated Logging Instrument Platform while Drilling[J]. Petroleum Drilling Techniques, 2019, 47(1): 118-126. DOI: 10.11911/syztjs.2019016 |
The goals were to detect characteristics of of multi-depth formations and evaluate mud intrusion as well as identify the formation lithology. To that end, researchers developed an integrated logging instrument platform while drilling capable of multi-parameter measurement such as resistivity and Gamma. According to the measurement methods like phase shift resistivity, attenuation resistivity, total Gamma and imaging Gamma, an eight-coil design (six senders and two receivers) was adopted, and the sensors such as Gamma probes, accelerometers, and fluxgates were attached. Meanwhile, the modular circuit design scheme consisting of transmitting circuit, receiving circuit and control circuit was applied. Researchers then defined the bus communication protocol to establish the information transmission among various functional modules. The firmware program for the logging instrument platform has been developed, which can not only measures the phase shift resistivity and attenuation resistivity data, but also measure the Gamma data and formation azimuth information. The test software for the platform has been developed to calibrate the instrument and enable the startup setting prior to running in hole, realize the issuing of control commands and upload the measurement data, and monitor and graphically process data such as resistivity, Gamma, inclination angle, and tool face. This integrated logging instrument platform could provide abundant high-quality logging data for high-angle well and horizontal well drilling, and acquire necessary data for formation evaluation, so as to provide technical support and best practices for the development of unconventional oil and gas reservoirs.
[1] |
秦绪英, 肖立志, 索佰峰. 随钻测井技术最新进展及其应用[J]. 勘探地球物理进展, 2003, 26(4): 313–322 http://d.old.wanfangdata.com.cn/Periodical/ktdqwljz200304015
QIN Xuying, XIAO Lizhi, SUO Baifeng. The development of logging while drilling and its application[J]. Progress in Exploration Geophysics, 2003, 26(4): 313–322 http://d.old.wanfangdata.com.cn/Periodical/ktdqwljz200304015
|
[2] |
张辛耘, 王敬农, 郭彦军. 随钻测井技术进展和发展趋势[J]. 测井技术, 2006, 30(1): 10–15 doi: 10.3969/j.issn.1004-1338.2006.01.002
ZHANG Xinyun, WANG Jingnong, GUO Yanjun. Advances and trends in logging while drilling technology[J]. Well Logging Technology, 2006, 30(1): 10–15 doi: 10.3969/j.issn.1004-1338.2006.01.002
|
[3] |
赵平, 郭永旭, 张秋海. 随钻测井技术新进展[J]. 国外测井技术, 2013, 34(2): 7–17 http://d.old.wanfangdata.com.cn/Periodical/kjzxdb201003044
ZHAO Ping, GUO Yongxu, ZHANG Qiuhai. Recent advances in logging while drilling[J]. World Well Logging Technology, 2013, 34(2): 7–17 http://d.old.wanfangdata.com.cn/Periodical/kjzxdb201003044
|
[4] |
李洪强, 丁景丽, 林楠, 等. 随钻伽马测量数据处理方法的研究及应用[J]. 石油钻探技术, 2008, 36(4): 12–14 doi: 10.3969/j.issn.1001-0890.2008.04.003
LI Hongqiang, DING Jingli, LIN Nan, et al. Research and application of data processing in gamma ray logging while drilling[J]. Petroleum Drilling Techniques, 2008, 36(4): 12–14 doi: 10.3969/j.issn.1001-0890.2008.04.003
|
[5] |
骆庆锋, 李安宗, 陈鹏, 等. 一种随钻伽马成像数据处理方法: CN201510927599.8 [P]. 2015-12-14.
LUO Qingfeng, LI Anzong, CHEN Peng, et al. A data processing method of gamma imaging while drilling: CN201510927599.8[P]. 2015-12-14.
|
[6] |
吴文圣, 李梦婷. 随钻伽马成像测井方位分辨率计算方法及装置与流程: CN201810292102.3[P]. 2018-04-03.
WU Wensheng, LI Mengting. Azimuth resolution calculation method and device for gamma imaging logging while drilling: CN201810292102.3[P]. 2018-04-03.
|
[7] |
XU Libai. Method for correcting natural gamma ray logging measurements: US15248962 [P]. 2016-08-26.
|
[8] |
史晓锋, 李铮, 蔡志权. 随钻电磁波传播电阻率测量工具探测深度研究[J]. 测井技术, 2002, 26(2): 113–117 doi: 10.3969/j.issn.1004-1338.2002.02.007
SHI Xiaofeng, LI Zheng, CAI Zhiquan. Inversion depth of MWD propagation resistivity logging[J]. Well Logging Technology, 2002, 26(2): 113–117 doi: 10.3969/j.issn.1004-1338.2002.02.007
|
[9] |
黄忠富, 黄瑞光, 陈鹏. 随钻电阻率测井仪器的实现[J]. 测井技术, 2002, 26(2): 172–175 doi: 10.3969/j.issn.1004-1338.2002.02.022
HUANG Zhongfu, HUANG Ruiguang, CHEN Peng. Development of MWD resistivity logging tool[J]. Well Logging Technology, 2002, 26(2): 172–175 doi: 10.3969/j.issn.1004-1338.2002.02.022
|
[10] |
杨震, 肖红兵, 李翠. 随钻方位电磁波仪器测量精度对电阻率及界面预测影响分析[J]. 石油钻探技术, 2017, 45(4): 115–120 http://d.old.wanfangdata.com.cn/Periodical/syztjs201704020
YANG Zhen, XIAO Hongbing, LI Cui. Impacts of accuracy of azimuthal electromagnetic logging-while-drilling on resistivity and interface prediction[J]. Petroleum Drilling Techniques, 2017, 45(4): 115–120 http://d.old.wanfangdata.com.cn/Periodical/syztjs201704020
|
[11] |
刘乃震, 王忠, 刘策. 随钻电磁波传播方位电阻率仪地质导向关键技术[J]. 地球物理学报, 2015, 58(5): 1767–1775 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505026.htm
LIU Naizhen, WANG Zhong, LIU Ce. Theories and key techniques of directional electromagnetic propagation resistivity tool for geosteering applications while drilling[J]. Chinese Journal of Geophysics, 2015, 58(5): 1767–1775 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505026.htm
|
[12] |
倪卫宁, 张晓彬, 万勇, 等. 随钻方位电磁波电阻率测井仪分段组合线圈系设计[J]. 石油钻探技术, 2017, 45(2): 115–120 http://d.old.wanfangdata.com.cn/Periodical/syztjs201702019
NI Weining, ZHANG Xiaobin, WAN Yong, et al. The design of the coil system in LWD tools based on azimuthal electromagnetic-wave resistivity combined with sections[J]. Petroleum Drilling Techniques, 2017, 45(2): 115–120 http://d.old.wanfangdata.com.cn/Periodical/syztjs201702019
|
[13] |
王磊, 范宜仁, 邢涛, 等. 基于随钻电磁波测井资料的地层各向异性电阻率提取方法: CN201711336574.6 [P]. 2017-12-14.
WANG Lei, FAN Yiren, XING Tao, et al. Extraction of formation anisotropic resistivity based on electromagnetic logging while dril-ling data: CN201711336574.6[P]. 2017-12-14.
|
[14] |
杨锦舟, 肖红兵, 杨全进, 等. 一种随钻电阻率近钻头测量装置: CN201310003353.2 [P]. 2013-01-06.
YANG Jinzhou, XIAO Hongbing, YANG Quanjin, et al. A near bit me-asuring device for resistivity while drilling: CN201310003353.2[P]. 2013-01-06.
|
[15] |
WANG Tsili. Apparatus and method for microresistivity imaging in which transmitter coil and receiver coil axes are substantially per-pendicular to the longitudinal axis of the tool body: US13819122[P]. 2011-08-26.
|
1. |
姚辉前,李振,刘伟,张春儒,吕嘉晨. 致密油气尾管回接不固井压裂井筒技术研究与应用. 石油矿场机械. 2024(02): 57-62 .
![]() | |
2. |
邹剑,高尚,兰夕堂,符扬洋,张新平,徐凤祥,王玥,张秀青. 基于有限元仿真技术的超大通径悬挂器的研制与应用. 当代化工. 2024(08): 1944-1947+1951 .
![]() | |
3. |
田晓勇,张京华,蒋海涛,蒋本强,苟旭东,古青,宋剑鸣. 尾管悬挂系统在高温、强碱、高盐环境失效分析与改进应用. 内蒙古石油化工. 2024(10): 4-7 .
![]() | |
4. |
胡晋军,韩广海,张海峰,史为纪. 北黄海太阳盆地复杂深井小间隙尾管固井技术. 石油钻探技术. 2023(01): 40-44 .
![]() | |
5. |
曾义金,金衍,周英操,陈军海,李牧,光新军,卢运虎. 深层油气钻采技术进展与展望. 前瞻科技. 2023(02): 32-46 .
![]() | |
6. |
曾义金. 中国石化深层超深层油气井固井技术新进展与发展建议. 石油钻探技术. 2023(04): 66-73 .
![]() | |
7. |
王泽. 东海X井下7″尾管作业实践与研究. 化工管理. 2023(25): 170-172 .
![]() | |
8. |
袁伟楠,张作伟,孙轶杰. 298.450mm套管坐挂244.475mm悬挂器技术研究与应用. 石化技术. 2023(10): 101-103 .
![]() | |
9. |
黄峰,王有伟,田进. 深层高温页岩气井固井流体研究进展. 辽宁化工. 2022(01): 54-59+63 .
![]() | |
10. |
张瑞. 顶部驱动液压尾管悬挂器研制与现场试验. 钻采工艺. 2022(04): 26-31 .
![]() | |
11. |
谢斌,陈超峰,马都都,练章华,史君林. 超深高温高压井尾管悬挂器安全性评价新方法. 天然气工业. 2022(09): 93-101 .
![]() | |
12. |
张瑞. 压力平衡式尾管悬挂器在西北超深井的应用. 石油机械. 2022(10): 1-7 .
![]() | |
13. |
路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 .
![]() | |
14. |
冯丽莹,敖竹青,段风海,曹海涛,宋兵. 深井、超深井短尾管安全丢手关键技术研究. 石油机械. 2021(03): 34-39 .
![]() | |
15. |
周建平,杨战伟,徐敏杰,王丽伟,姚茂堂,高莹. 工业氯化钙加重胍胶压裂液体系研究与现场试验. 石油钻探技术. 2021(02): 96-101 .
![]() | |
16. |
胡晋军,张立丽,张耀,孟庆祥,黄志刚. 埕海油田大斜度井超短尾管固井技术. 石油钻探技术. 2021(03): 81-86 .
![]() | |
17. |
郭元岭,张杰,赵利华,岑芳,王丹,叶欣,潘伟义. 油气勘探开发科技管理基本特征与实践. 石油科技论坛. 2021(02): 23-28+34 .
![]() | |
18. |
刘国祥,赵德利,李振,孔博. 深井超深井短轻尾管短路故障测试方法与现场应用. 石油钻探技术. 2021(05): 70-74 .
![]() | |
19. |
郭朝辉,李振,罗恒荣. Φ273.1mm无限极循环尾管悬挂器在元坝气田的应用研究. 石油钻探技术. 2021(05): 64-69 .
![]() | |
20. |
张瑞,李夯,阮臣良. ?193.7 mm×?139.7 mm旋转尾管悬挂器的研制与应用. 石油机械. 2020(04): 9-15 .
![]() | |
21. |
朱玉磊. 我国尾管悬挂器技术发展探讨. 科技创新与应用. 2020(20): 149-150 .
![]() | |
22. |
丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议. 石油钻探技术. 2020(04): 11-20 .
![]() |