YANG Jinhui, LI Li, LI Zhongyang, JU Binshan. Numerical Simulation on the Effects of Slippage and Stress Sensibility on the Performance of Shale Gas Development[J]. Petroleum Drilling Techniques, 2017, 45(1): 83-90. DOI: 10.11911/syztjs.201701015
Citation: YANG Jinhui, LI Li, LI Zhongyang, JU Binshan. Numerical Simulation on the Effects of Slippage and Stress Sensibility on the Performance of Shale Gas Development[J]. Petroleum Drilling Techniques, 2017, 45(1): 83-90. DOI: 10.11911/syztjs.201701015

Numerical Simulation on the Effects of Slippage and Stress Sensibility on the Performance of Shale Gas Development

More Information
  • Received Date: October 09, 2016
  • Revised Date: December 26, 2016
  • Gas slippage and stress sensibility are two important factors which influence the development performances in shale gas reservoirs.To highlight their quantitative effects on gas production rates,a mathematical model with consideration of both slippage and stress sensibility in a two-phase flow in shale gas reservoirs was set up by using an equivalent porous media model, in which a finite difference method was used to solve the model. In addition, a numerical simulator of shale gas reservoirs was developed in Fortran(computer language).The effect of stress sensibility and gas slippage on gas well productivity was quantitatively studied by using the innovative simulator at a constant production rate and a specified bottom flow pressure in declining production.Numerical simulation results were then compared with field production data of Well W3 in a Haynesville shale gas reservoir.The numerical results showed that both formation pressure and permeability declined during depletion development of the gas reservoir and dramatical decline was observed near the wellbore region.In the first production year,shale gas production rate declined sharply;but slippage and stress sensibility displayed minor effect on the production rate.The effect of stress sensibility and gas slippage on production became more significant after 500 days of production.The decline curve closely tracked the simulation and history matching,and it thus validated the result calculated from a shale gas reservoir simulator with relatively high reliability.The successful development of a numerical simulator for shale gas reservoirs migth provide an innovative and effective approach for predicting gas production rates and decline curves.
  • [1]
    路保平.中国石化页岩气工程技术进步及展望[J].石油钻探技术,2013,41(5):1-8. LU Baoping.Sinopec engineering technical advance and its developing tendency in shale gas[J].Petroleum Drilling Techniques,2013,41(5):1-8.
    [2]
    PADILLA A.Social responsibility management systems:elevating performance for shale gas development[R].SPE 156728,2012.
    [3]
    薛承瑾.国内页岩气有效开采值得关注的几个问题[J].石油钻探技术,2012,40(4):1-6. XUE Chengjin.Noteworthy issues on effective production of shale gas resource in China[J].Petroleum Drilling Techniques,2012,40(4):1-6.
    [4]
    李亚洲,李勇明,罗攀,等.页岩气渗流机理与产能研究[J].断块油气田,2013,20(2):186-190. LI Yazhou,LI Yongming,LUO Pan,et al.Study on seepage mechanism and productivity of shale gas[J].Fault-Block Oil Gas Field,2013,20(2):186-190.
    [5]
    OZKAN E,RAGHAVAN R S,APAYDIN O G.Modeling of fluid transfer from shale matrix to fracture network[R].SPE 134830,2010.
    [6]
    WATSON A T,GATENS J M III S A,LEE W J,et al.An analytical model for history matching naturally fractured reservoir production data[R].SPE 18856,1990.
    [7]
    WARREN J E,ROOT P J.The behavior of naturally fracture reservoirs[J].SPE Journal,1963,3(3):245-255.
    [8]
    肖晓春,潘一山.滑脱效应影响的低渗煤层气运移实验研究[J].岩土工程学报,2009,31(10):1554-1558. XIAO Xiaochun,PAN Yishan.Experimental study on gas slippage effects in hypotonic coal reservoir[J].Chinese Journal of Geotechnical Engineering,2009,31(10):1554-1558.
    [9]
    刘萱,许浩,汤达祯,等.低渗煤层气藏中的滑脱效应及影响因素[J].科技创新导报,2014,11(20):32-33. LIU Xuan,XU Hao,TANG Dazhen,et al.Factors on gas slippage effects in low permeability coal reservoir[J].Science and Technology Innovation Herald,2014,11(20):32-33.
    [10]
    SHABRO V,TORRES-VERDIN C,JAVADPOUR F.Numerical simulation of shale-gas production:from pore-scale modeling of slip-flow,Knudsen diffusion,and Langmuir desorption to reservoir modeling of compressible fluid[R].SPE 144355,2001.
    [11]
    SWAMI V.Shale gas reservoir modeling:from nanopores to laboratory[R].SPE 163065,2012.
    [12]
    AZOM P N,JAVADPOUR F.Dual-continuum modeling of shale and tight gas reservoirs[R].SPE 159584,2012.
    [13]
    JAVADPOUR F,FISHER D,UNSWORTH M.Nanoscale gas flow in shale gas sediments[J].Journal of Canadian Petroleum Technology,2007,46(10):55-61.
    [14]
    JAVADPOUR F.Nanopores and apparent permeability of gas flow in mudrocks(shales and siltstone)[J].Journal of Canadian Petroleum Technology,2009,48(8):16-21.
    [15]
    夏阳,金衍,陈勉,等.页岩气渗流数学模型[J].科学通报,2015,60(24):2259-2271. XIA Yang,JIN Yan,CHEN Mian,et al.Gas flow in shale reservoirs[J].Chin.Sci.Bull.,2015,60(24):2259-2271.
    [16]
    邓佳,朱维耀,刘锦霞,等.考虑应力敏感性的页岩气产能预测模型[J].天然气地球科学,2013,24(3):456-460. DENG Jia,ZHU Weiyao,LIU Jinxia,et al.Productivity prediction model of shale gas considering stress sensitivity[J].Natural Gas Geoscience,2013,24(3):456-460.
    [17]
    田冷,肖聪,顾岱鸿.考虑应力敏感与非达西效应的页岩气产能模型[J].天然气工业,2014,34(12):70-75. TIAN Leng,XIAO Cong,GU Daihong.A shale gas reservoir productivity model considering stress sensitivity and non-Darcy flow[J].Natural Gas Industry,2014,34(12):70-75.
    [18]
    郭肖,任影,吴红琴.考虑应力敏感和吸附的页岩表观渗透率模型[J].岩性油气藏,2015,27(4):109-112. GUO Xiao,REN Ying,WU Hongqin.Apparent permeability model of shale gas considering stress sensitivity and adsorption[J].Lithologic Reservoirs,2015,27(4):109-112.
    [19]
    郭小哲,周长沙.基于滑脱的页岩气藏压裂水平井渗透模型及产能预测[J].石油钻采工艺,2015,37(3):61-65. Guo Xiaozhe, Zhou Changsha, Seepage and productivity forecast based on slippage of fratured horizontal well in shale gas pool[J].Oil Drilling Production Technology, 2015, 37(3):61-65.
    [20]
    孙海,姚军,孙致学,等.页岩气数值模拟技术进展及展望[J].油气地质与采收率,2012,19(1):46-49. SUN Hai,YAO Jun,SUN Zhixue.Recent development and prospect on numerical simulation of shale gas reservoirs[J].Petroleum Geology and Recovery Efficiency,2012,19(1):46-49.
    [21]
    李玉梅,吕炜,宋杰,等.层理性页岩气储层复杂网络裂缝数值模拟研究[J].石油钻探技术,2016,44(4):108-113. LI Yumei,LYU Wei,SONG Jie,et al.Numerical simulation study on the complex network fractures of stratified shale gas reservoirs[J].Petroleum Drilling Techniques,2016,44(4):108-113.
    [22]
    CARLSON E S,MERCER J C.Devonian shale gas production:mechanisms and simple models[J].Journal of Petroleum Technology,1991,43(4):476-482.
    [23]
    MORIDIS G J,BLASINGAME T A,FREEMAN C M.Analysis of mechanisms of flow in fractured tight-gas and shale-gas reservoirs[R].SPE 139250,2010.
    [24]
    KLINKENBERG L J.The permeability of porous media to liquids and gases[J].Socar Proceedings,1941,2(2):200-213.
    [25]
    张睿,宁正福,杨峰,等.微观孔隙结构对页岩应力敏感影响的实验研究[J].天然气地球科学,2014,25(8):1284-1289. ZHANG Rui,NING Zhengfu,YANG Feng,et al.Experimental study on microscopic pore structure controls on shale permeability under compaction process[J].Natural Gas Geoscience,2014,25(8):1284-1289.
    [26]
    JU Binshan,WU Yushu,FAN Tailiang.Study on fluid flow in nonlinear elastic porous media:experimental and modeling approaches[J].Journal of Petroleum Science Engineering,2011,76(3/4):205-211.
    [27]
    任飞,王新海,谢玉银,等.考虑滑脱效应的页岩气井底压力特征[J].石油天然气学报,2013,35(3):124-126. REN Fei,WANG Xinhai,XIE Yuyin,et al.Characteristics of bottom pressure of shale-gas well considering slippage effect[J].Journal of Oil and Gas Technology,2013,35(3):124-126.
    [28]
    韩大匡,陈钦雷,闫存章.油藏数值模拟基础[M].北京:石油工业出版社,1993. HAN Dakuang,CHEN Qinlei,YAN Cunzhang.Fundmentals of oil reservoir numerical simulation[M].Beijing:Petroleum Industry Press,1993.
    [29]
    JU Binshan,FAN Tailiang,WANG Xiaodong,et al.A new simulation framework for predicting the onset and effects of fines mobilization[J].Transport in Porous Media,2007,68(2):265-283.
    [30]
    葛洪魁,申颍浩,宋岩,等.页岩纳米孔隙气体流动的滑脱效应[J].天然气工业,2014,34(7):46-54. GE Hongkui,SHEN Yinghao,SONG Yan,et al.Slippage effect of shale gas flow in nanoscale pores[J].Natural Gas Industry,2014,34(7):46-53.
    [31]
    白玉湖,杨皓,陈桂华,等.页岩气产量递减典型曲线的不确定性分析方法[J].石油钻探技术,2013,41(4):97-100. BAI Yuhu,YANG Hao,CHEN Guihua,et al.An uncertainty analysis method on typical production decline curve for shale gas reservoirs[J].Petroleum Drilling Techniques,2013,41(4):97-100.
    [32]
    张荻萩,李治平,苏皓.页岩气产量递减规律研究[J].岩性油气藏,2015,27(6):138-144. ZHANG Diqiu,LI Zhiping,SU Hao.Production decline trend of shale gas[J].Lithologic Reservoirs,2015,27(6):138-144.
  • Related Articles

    [1]CUI Zhuang, HOU Bing. A Numerical Simulation for Damage Mechanical Behavior of Brazilian Splitting Test of Deep Shales[J]. Petroleum Drilling Techniques, 2024, 52(2): 218-228. DOI: 10.11911/syztjs.2024032
    [2]SHU Honglin, LIU Chen, LI Zhiqiang, DUAN Guifu, LAI Jianlin, JIANG Ming. Numerical Simulation of Complex Fracture Propagation in Shallow Shale Gas Fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77-84. DOI: 10.11911/syztjs.2023095
    [3]XIAN Yuxi, CHEN Chaofeng, FENG Meng, HAO Youzhi. Numerical Simulation of Multiphase Flow in Fracture Networks in Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(5): 94-100. DOI: 10.11911/syztjs.2021090
    [4]HUANG Yingsong. Solution of Nonlinear Seepage Model for Fracture Well Groupin Low Permeability Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(6): 96-102. DOI: 10.11911/syztjs.2019078
    [5]YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
    [6]Chen Xiuping, Zou Deyong, Li Dongjie, Lou Erbiao. Numerical Simulation Study on the Anti-Balling Performance of PDC Drill Bits[J]. Petroleum Drilling Techniques, 2015, 43(6): 108-113. DOI: 10.11911/syztjs.201506020
    [7]Nie Xiangrong, Yang Shenglai. Numerical Simulation of Cooling Damage to High Pour-Point Oil Reservoirs[J]. Petroleum Drilling Techniques, 2014, 42(1): 100-104. DOI: 10.3969/j.issn.1001-0890.2014.01.020
    [8]Xu Peng, Liu Xinyun, Shi Libao. Numerical Simulation for the Effect of Ground Stress on Explosive Fracturing[J]. Petroleum Drilling Techniques, 2013, 41(1): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.01.013
    [9]Li Hongqian. Numerical Simulation on the Annular Flow Induced by Spiral Casing Centralizer[J]. Petroleum Drilling Techniques, 2012, 40(2): 25-29. DOI: 10.3969/j.issn.1001-0890.2012.02.005
    [10]Li Chunying, Wu Xiaodong. Numerical Simulation of Remaining Oil Distribution in Cyclothem[J]. Petroleum Drilling Techniques, 2012, 40(1): 88-91. DOI: 10.3969/j.issn.1001-0890.2012.01.018
  • Cited by

    Periodical cited type(35)

    1. 付海峰,刘鹏林,陈祝兴,翁定为,马泽元,李军. 基于避免断层激活机制的组合压裂模式研究. 石油机械. 2024(01): 88-97 .
    2. 刘豪,刘怀亮,刘宇,曹伟,连威,李军. 页岩气多级压裂断层动态滑移规律研究. 石油机械. 2024(02): 65-74 .
    3. 刘怀亮,樊子潇,刘宇,连威,席岩,张小军. 基于震源机制的断层滑移量计算方法. 世界石油工业. 2024(05): 40-47 .
    4. 林魂,宋西翔,杨兵,袁勇,张健强,孙新毅. 温-压耦合作用下断层滑移对套管应力的影响. 石油机械. 2023(06): 136-142+158 .
    5. 孟胡,吕振虎,王晓东,张辉,申颍浩,葛洪魁. 基于压裂参数优化的套管剪切变形控制研究. 断块油气田. 2023(04): 601-608 .
    6. 张伟,李军,张慧,王典,李托,刘怀亮. 断层滑移对套管剪切变形的影响规律及防控措施. 断块油气田. 2023(05): 734-742 .
    7. 文山师,尹陈,石学文,张洞君,韩福盛,熊财富. 天然裂缝主导模式下泸州龙马溪组页岩水力压裂多尺度破裂特征. 地球物理学进展. 2023(05): 2172-2181 .
    8. 赵欢,李玮,唐鹏飞,王晓,张明慧,王剑波. 压裂工况下近井筒地应力及套管载荷分布规律研究. 石油钻探技术. 2023(05): 106-111 . 本站查看
    9. 孟胡,申颍浩,朱万雨,李小军,雷德荣,葛洪魁. 四川盆地昭通页岩气水平井水力压裂套管外载分析. 特种油气藏. 2023(05): 166-174 .
    10. 陈朝伟,周文高,项德贵,谭鹏,宋建,陈晓军,任乐佳,黄浩. 预防页岩气套变的橡胶组合套管研制及其抗剪切性能评价. 天然气工业. 2023(11): 131-136 .
    11. 张旭,张哲平,杨尚谕,王雪刚,宋琳. 基于特征值和弧长法计算套管抗挤强度. 钻采工艺. 2022(01): 35-40 .
    12. 陈朝伟,项德贵. 四川盆地页岩气开发套管变形一体化防控技术. 中国石油勘探. 2022(01): 135-141 .
    13. 吴建忠,乔智国,慈建发,何龙,连威,李军. 基于震源机制的套管变形量控制方法研究. 石油管材与仪器. 2022(03): 24-31 .
    14. 刘鹏林,李军,席岩,连威,张小军,郭雪利. 页岩断层滑移量计算模型及影响因素研究. 石油机械. 2022(08): 74-80 .
    15. 郭雪利,沈吉云,武刚,靳建洲,纪宏飞,徐明,刘慧婷,黄昭. 韧性材料对页岩气压裂井水泥环界面完整性影响. 表面技术. 2022(12): 232-242 .
    16. 陈朝伟,黄锐,曾波,宋毅,周小金. 四川盆地长宁页岩气区块套管变形井施工参数优化分析. 石油钻探技术. 2021(01): 93-100 . 本站查看
    17. 李军,赵超杰,柳贡慧,张辉,张鑫,任凯. 页岩气压裂条件下断层滑移及其影响因素. 中国石油大学学报(自然科学版). 2021(02): 63-70 .
    18. 张平,何昀宾,刘子平,童亨茂,邓才,任晓海,张宏祥,李彦超,屈玲,付强,王向阳. 页岩气水平井套管的剪压变形试验与套变预防实践. 天然气工业. 2021(05): 84-91 .
    19. 李晓蓉,古臣旺,冯永存,丁泽晨. 考虑井筒加载历史的压裂过程中套管剪切变形数值模拟研究. 石油科学通报. 2021(02): 245-261 .
    20. 张鑫,李军,刘鹏林,郭雪利,韩葛伟. 断层滑移条件下页岩气井套管变形影响因素分析. 科学技术与工程. 2021(16): 6651-6656 .
    21. 陈朝伟,张浩哲,周小金,曹虎. 四川长宁页岩气套管变形井微地震特征分析. 石油地球物理勘探. 2021(06): 1286-1292+1198 .
    22. 张慧,李军,张小军,张鑫,连威. 页岩气井压裂液进入断层的途径及防控措施. 断块油气田. 2021(06): 750-754+760 .
    23. 林志伟,钟守明,宋琳,王雪刚,林铁军,于浩,史涛. 体积压裂改造非对称性对套管损坏影响机理. 特种油气藏. 2021(06): 158-164 .
    24. 陈朝伟,房超,朱勇,项德贵. 四川页岩气井套管变形特征及受力模式. 石油机械. 2020(02): 126-134 .
    25. 连威,李军,柳贡慧,席岩,韩葛伟. 水力压裂过程中页岩强度折减对套管变形的影响分析. 石油管材与仪器. 2020(04): 46-50 .
    26. 蒋振源,陈朝伟,张平,张丰收. 断块滑动引起的套管变形及影响因素分析. 石油管材与仪器. 2020(04): 30-37 .
    27. 范宇,黄锐,曾波,陈朝伟,周小金,项德贵,宋毅. 四川页岩气水力压裂诱发断层滑动和套管变形风险评估. 石油科学通报. 2020(03): 366-375 .
    28. 陈朝伟,曹虎,周小金,苟其勇,张浩哲. 四川盆地长宁区块页岩气井套管变形和裂缝带相关性. 天然气勘探与开发. 2020(04): 123-130 .
    29. 席岩,李军,柳贡慧,曾义金,李剑平. 页岩气水平井多级压裂过程中套管变形研究综述. 特种油气藏. 2019(01): 1-6 .
    30. 乔磊,田中兰,曾波,杨恒林,付盼,杨松. 页岩气水平井多因素耦合套变分析. 断块油气田. 2019(01): 107-110 .
    31. 高德利,刘奎. 页岩气井井筒完整性若干研究进展. 石油与天然气地质. 2019(03): 602-615 .
    32. 罗庆,黄华,徐菲,张立. 新型组合井况监测仪在普光高含硫气井的应用. 断块油气田. 2019(02): 240-243 .
    33. 陈朝伟,项德贵,张丰收,安孟可,尹子睿,蒋振源. 四川长宁—威远区块水力压裂引起的断层滑移和套管变形机理及防控策略. 石油科学通报. 2019(04): 364-377 .
    34. 周波,毛蕴才,查永进,汪海阁. 体积压裂水锤效应对页岩气井屏障完整性影响及对策. 石油钻采工艺. 2019(05): 608-613 .
    35. 郭雪利,李军,柳贡慧,陈朝伟,任凯,来东风. 基于震源机制的页岩气压裂井套管变形机理. 断块油气田. 2018(05): 665-669 .

    Other cited types(32)

Catalog

    Article Metrics

    Article views (19907) PDF downloads (14891) Cited by(67)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return