HUANG Yingsong. Solution of Nonlinear Seepage Model for Fracture Well Groupin Low Permeability Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(6): 96-102. DOI: 10.11911/syztjs.2019078
Citation: HUANG Yingsong. Solution of Nonlinear Seepage Model for Fracture Well Groupin Low Permeability Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(6): 96-102. DOI: 10.11911/syztjs.2019078

Solution of Nonlinear Seepage Model for Fracture Well Groupin Low Permeability Reservoirs

More Information
  • Received Date: June 05, 2018
  • Revised Date: June 25, 2019
  • Available Online: September 11, 2019
  • Having a closely detailed description of the nonlinear relationship between flow velocity and pressure gradient in low permeability reservoir is necessary for accurately developing the frac design, and calculating the production of a group (or unit) of wells that have been hydraulically fractured. Therefore, based on the description of the nonlinear seepage characteristics of low permeability reservoir, a nonlinear mathematical model of coupling low permeability reservoir and hydraulic fractures was established, which divided the seepage process into the nonlinear seepage stage and quasi-linearity stage according to the seepage characteristics. The Taylor expansion was used to linearize the nonlinear mathematical model, and established the finite difference equations, and then formed the computer solving model. The results of example analysis showed that the distributions of formation pressure and saturation calculated by the nonlinear mathematical model were in line with the actual situations of the stratum; the fracture flow conductivity of injection well in the fractured five-spot well pattern decreased with the formation closure, which led to poor water injection effect and low oil well production. Thus, the fracture design should be modified in accordance with the study’s results. The study results indicated that the nonlinear mathematical model and hydraulic fracture coupling could accurately describe the nonlinear relationship between flow velocity and pressure gradient in low-permeability reservoir. This breakthrough establishes a foundation to calculate the production of fractured well group in low-permeability reservoir accurately, and provides a guidance for water flooding development of low permeability reservoir.

  • [1]
    宋付权,刘慈群. 含启动压力梯度油藏的两相渗流分析[J]. 石油大学学报(自然科学版), 1999, 23(3): 47–50. doi: 10.3863/j.issn.1674-5086.1999.03.014

    SONG Fuquan, LIU Ciqun. Analysis of two-phase fluid flow in low permeability reservoir with the threshold pressure gradient[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 1999, 23(3): 47–50. doi: 10.3863/j.issn.1674-5086.1999.03.014
    [2]
    程时清, 陈明卓. 油水两相低速非达西渗流数值模拟[J]. 石油勘探与开发, 1998, 25(1): 41–43. doi: 10.3321/j.issn:1000-0747.1998.01.012

    CHENG Shiqing, CHEN Mingzhuo. Numerical simulation of oil-water low-velocity non-Darcy flow[J]. Petroleum Exploration and Development, 1998, 25(1): 41–43. doi: 10.3321/j.issn:1000-0747.1998.01.012
    [3]
    周涌沂,彭仕宓,李允,等. 低速非达西渗流的全隐式模拟模型[J]. 石油勘探与开发, 2002, 29(2): 90–93. doi: 10.3321/j.issn:1000-0747.2002.02.024

    ZHOU Yongyi, PENG Shimi, LI Yun, et al. Fully implicit simulation model for low-velocity non-Darcy flow[J]. Petroleum Exploration and Development, 2002, 29(2): 90–93. doi: 10.3321/j.issn:1000-0747.2002.02.024
    [4]
    尹芝林,孙文静,姚军. 动态渗透率三维油水两相低渗透油藏数值模拟[J]. 石油学报, 2011, 32(1): 117–121. doi: 10.3969/j.issn.1001-8719.2011.01.020

    YIN Zhilin, SUN Wenjing, YAO Jun. Numerical simulation of the 3D oil-water phase dynamic permeability for low-permeability reservoirs[J]. Acta Petrolei Sinica, 2011, 32(1): 117–121. doi: 10.3969/j.issn.1001-8719.2011.01.020
    [5]
    吕广忠,鞠斌山,栾志安. 油藏水力压裂区域分解模拟算法[J]. 石油大学学报(自然科学版), 1998, 22(5): 61–63.

    LYU Guangzhong, JU Binshan, LUAN Zhian. Domain decomposition simulation method for hydraulic fracturing area of reservoir[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1998, 22(5): 61–63.
    [6]
    苏玉亮,王霞,李涛,等. 人工裂缝对低渗透油田开发的影响研究[J]. 钻采工艺, 2006, 29(4): 33–34. doi: 10.3969/j.issn.1000-7393.2006.04.011

    SU Yuliang, WANG Xia, LI Tao, et al. Influence of created fracture on low permeability reservoir development[J]. Drilling & Production Technology, 2006, 29(4): 33–34. doi: 10.3969/j.issn.1000-7393.2006.04.011
    [7]
    何勇明,孙尚如,徐荣伍, 等. 低渗透油藏污染井压裂增产率预测模型及敏感性分析[J]. 中国石油大学学报(自然科学版), 2010, 34(3): 76–79. doi: 10.3969/j.issn.1673-5005.2010.03.016

    HE Yongming, SUN Shangru, XU Rongwu, et al. Prediction model for fracturing incremental recovery of damaged well in low-permeability reservoir and sensitivity analysis[J]. Journal of China University of Petroleum(Edition of Natural Science), 2010, 34(3): 76–79. doi: 10.3969/j.issn.1673-5005.2010.03.016
    [8]
    BELHAJ H A, AGHA K R, NOURI A M, et al. Numerical modeling of Forchheimer’s equation to describe darcy and non-Darcy flow in porous media[R]. SPE 80440, 2003.
    [9]
    SOLIMAN M Y. Numerical model estimates fracture production increase[J]. Oil and Gas, 1986, 84(41): 70–74.
    [10]
    温庆志,张士诚,王秀宇,等. 支撑裂缝长期导流能力数值计算[J]. 石油钻采工艺, 2005, 27(4): 68–70. doi: 10.3969/j.issn.1000-7393.2005.04.020

    WEN Qingzhi, ZHANG Shicheng, WANG Xiuyu, et al. Numerical calculation of long - term conductivity of propping fractures[J]. Oil Drilling & Production Technology, 2005, 27(4): 68–70. doi: 10.3969/j.issn.1000-7393.2005.04.020
    [11]
    任勇,郭建春,赵金洲,等. 压裂井裂缝导流能力研究[J]. 河南石油, 2005, 19(1): 46–48. doi: 10.3969/j.issn.1673-8217.2005.01.017

    REN Yong, GUO Jianchun, ZHAO Jinzhou, et al. A study on flow conductivity of fractures in a fractured well[J]. Henan Petroleum, 2005, 19(1): 46–48. doi: 10.3969/j.issn.1673-8217.2005.01.017
    [12]
    胥元刚,张琪. 变裂缝导流能力下水力压裂整体优化设计方法[J]. 大庆石油地质与开发, 2000, 19(2): 40–43. doi: 10.3969/j.issn.1000-3754.2000.02.014

    XU Yuangang, ZHANG Qi. Overall optimizing designation method for hydraulic fracturing under variable fracture diverting capacity[J]. Petroleum Geology & Oilfield Development in Daqing, 2000, 19(2): 40–43. doi: 10.3969/j.issn.1000-3754.2000.02.014
    [13]
    孔祥言.高等渗流力学[M].合肥: 中国科学技术大学出版社, 1999: 76–77.

    KONG Xiangyan. Advanced seepage mechanics[M]. Hefei: Press of University of Science and Technology of China, 1999: 76–77.
    [14]
    李淑霞, 谷建伟.油藏数值模拟基础[M].东营: 中国石油大学出版社, 2009: 97–101.

    LI Shuxia, GU Jianwei. Fundamentals of numerical reservoir simulation[M]. Dongying: China University of Petroleum Press, 2008: 97–101.
    [15]
    戴嘉尊, 邱建贤.微分方程数值解法[M].南京: 东南大学出版社, 2002.

    DAI Jiazun, QIU Jianxian. Numerical solutions for differential equations[M]. Nanjing: Southeast University Press, 2002.
    [16]
    张建国, 雷光伦.油气层渗流力学[M].东营: 石油大学出版社, 1998: 46–47.

    ZHANG Jianguo, LEI Guanglun. Seepage mechanics of oil and gas reservoir[M]. Dongying: Petroleum University Press, 1998: 46–47.
  • Cited by

    Periodical cited type(15)

    1. 张翔宇,于田田,李爱芬,张仲平,郑万刚,初伟,马爱青,冯海顺. 低渗透夹层分布对正韵律非均质储层渗流规律的影响. 特种油气藏. 2024(05): 102-109 .
    2. 余金柱,王嘉鑫,李建辉,达引朋,任佳伟,赵争光,兰倩,王春蕾. 基于微震事件时空分布特征的连续裂缝网络建模方法研究——以致密砂岩储层重复压裂效果评价为例. 地球物理学进展. 2024(06): 2275-2285 .
    3. 张腾换,张涛,王同丁,唐凡,王燕,张煜. 高含水油井双向调堵剂性能评价及工艺参数优化. 应用化工. 2024(11): 2528-2532 .
    4. 段鹏辉,李向平,白晓虎,雷冠宇,黄婷,董奇. 裂缝性水淹油井梯次充填深部堵水延长措施有效期方法. 石油钻采工艺. 2024(04): 466-478 .
    5. 高明,王学洲,李涛,杨智. 油田压裂活动中低渗透技术的应用. 中国石油和化工标准与质量. 2023(06): 173-175 .
    6. 孙凤林,魏子扬,朱立国,吴清辉,张艳辉,左清泉. 高强度无机复合高温堵剂体系研究. 精细与专用化学品. 2023(04): 24-26 .
    7. 唐可,赵勇,李凯,宁朦,蒲万芬,田开平. 致密油藏压裂井气驱暂堵调剖剂研制与评价. 特种油气藏. 2023(02): 161-167 .
    8. 肖杭州. CL区块登娄库组致密砂岩气藏压裂液体系适应性评价. 特种油气藏. 2023(03): 143-147 .
    9. 张亚楠,张荣军,张超,林鹏,丁乾申. 新型延迟交联堵水剂体系的制备及性能评价. 应用化工. 2023(07): 2080-2083 .
    10. 蒲堡萍,魏建光,周晓峰,尚德淼. 基于机器学习的低渗透砂岩聚合物驱采收率预测. 科学技术与工程. 2023(28): 12045-12056 .
    11. 赵文景,王敬,钱其豪,于春磊,张民,刘慧卿,黄义涛. 非均质油藏水驱优势渗流通道演化规律. 断块油气田. 2023(05): 847-857 .
    12. 邹龙庆,何怀银,杨亚东,龚新伟,肖剑锋,苌北. 页岩气水平井暂堵球运移特性数值模拟研究. 石油钻探技术. 2023(05): 156-166 . 本站查看
    13. 余金柱. 低渗透油田压裂技术及发展趋势. 中国石油和化工标准与质量. 2023(21): 175-177 .
    14. 张天涯. 高含水率油藏人工强边水驱技术研究. 石油化工应用. 2022(10): 13-18 .
    15. 马虹,段斌. VOCs尾气光催化治理技术研究进展与文献计量学分析. 石油化工应用. 2022(10): 10-12+18 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1212) PDF downloads (52) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return