YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
Citation: YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018

Numerical Simulation for Flow Conductivity in Channeling Fractures

More Information
  • Received Date: August 09, 2016
  • Revised Date: October 13, 2016
  • To determine the conductivity of channeling fractures under field conditions and to identify factors that may affect such conductivity, a fluid flow model has been established in accordance with distribution of fractured sand bars. In addition, a numerical simulation has been performed to determine flow patterns of fluids in certain fracture and to calculate conductivity of such fractures. Research results showed that structures and distribution of pore channels in channeling fractures were key factors that might affect the conductivity of fractures. In the case that no continuous large channels were generated, or such major channels collapsed to generate dispersedly distributed pore structures, fluids in the fracture might encounter significant flow resistance. Under such circumstances, conductivities of channeling fractures might be reduced significantly. Relevant research results might provide a solid foundation to enhance conductivity of channeling fractures.
  • [1]
    李庆辉,陈勉,金衍,等.新型压裂技术在页岩气开发中的应用[J].特种油气藏,2012,19(6):1-7. LI Qinghui,CHEN Mian,JIN Yan,et al.Application of new fracturing technologies in shale gas development[J].Special Oil & Gas Reservoirs,2012,19(6):1-7.
    [2]
    刘向军.高速通道压裂工艺在低渗透油藏的应用[J].油气地质与采收率,2015,22(2):122-126. LIU Xiangjun.Application of hiway technology in the low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2015,22(2):122-126.
    [3]
    钟森,任山,黄禹忠,等.高速通道压裂技术在国外的研究与应用[J].中外能源,2012,17(6):39-42. ZHONG Sen,REN Shan,HUANG Yuzhong,et al.Research and application of channel fracturing technique in foreign oil and gas field[J].Sino-Global Energy,2012,17(6):39-42.
    [4]
    GILLARD M R,MEDVEDEV O O,HOSEIN P R,et al.A new approach to generating fracture conductivity[R].SPE 135034,2010.
    [5]
    AHMED M,HUSSAIN A,AHMED M.Optimizing production of tight gas wells by revolutionizing hydraulic fracturing[R].SPE 171408,2011.
    [6]
    MEDVEDEV A V,KRAEMER C C,PENA A A,et al.On the mechanisms of channel fracturing[R].SPE 163836,2013.
    [7]
    曲占庆,周丽萍,曲冠政,等.高速通道压裂支撑裂缝导流能力实验评价[J].油气地质与采收率,2015,22(1):122-126. QU Zhanqing,ZHOU Liping,QU Guanzheng,et al.Experimental evaluation on influencing factors of flow conductivity for channel fracturing proppant[J].Petroleum Geology and Recovery Efficiency,2015,22(1):122-126.
    [8]
    许国庆,张士诚,王雷,等.通道压裂支撑裂缝影响因素分析[J].断块油气田,2015,22(4):534-537. XU Guoqing,ZHANG Shicheng,WANG Lei,et al.Infleuence factors analysis of proppant fracture in channel fracturing[J].Fault-Block Oil & Gas Field,2015,22(4):534-537.
    [9]
    MEAKIN P,TARTAKOVSKY A M.Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media[J].Reviews of Geophysics,2009,47(3):4288-4309.
    [10]
    吴国涛,胥云,杨振周,等.考虑支撑剂及其嵌入程度对支撑裂缝导流能力影响的数值模拟[J].天然气工业,2013,33(5):65-68. WU Guotao,XU Yun,YANG Zhenzhou,et al.Numerical simulation considering the impact of proppant and its embedment degree on fracture flow conductivity[J].Natural Gas Industry,2013,33(5):65-68.
    [11]
    赵金洲,李志强,胡永全,等.考虑页岩储层微观渗流的压裂产能数值模拟[J].天然气工业,2015,35(6):53-58. ZHAO Jinzhou,LI Zhiqiang,HU Yongquan,et al.Numerical simulation of productivity after fracturing with consideration to micro-seepage in shale reservoirs[J].Natural Gas Industry,2015,35(6):53-58.
    [12]
    杨正明,张松,张训华,等.气井压后稳态产能公式和压裂数值模拟研究[J].天然气工业,2003,23(4):74-76. YANG Zhengming,ZHANG Song,ZHANG Xunhua,et al.The steady-state productivity formula after fracturing for gas wells and fracturing numerical simulation[J].Natural Gas Industry,2003,23(4):74-76.
    [13]
    DRANCHUK P M,ABOU-KASSEM H.Calculation of Z factors for natural gases using equations of state[J].Journal of Canadian Petroleum Technology,1975,14(3):34-36.
    [14]
    WILKE C R.A viscosity equation for gas mixtures[J].The Journal of Chemical Physics,1950,18(4):517-519.
    [15]
    COOK D,DOWNING K,BAYER S,et al.Unconventional-asset-development work flow in the Eagle Ford Shale[R].SPE 168973,2014.
    [16]
    张建国,杜殿发,侯健,等.油气层渗流力学[M].东营:石油大学出版社,1998:27-29. ZHANG Jianguo,DU Dianfa,HOU Jian,et al.Reservoir seepage mechanics[M].Dongying:Petroleum University Press,1998:27-29.
    [17]
    MEYER B R,BAZAN L W.A discrete fracture network model for hydraulically induced fractures-theory,parametric and case studies[R].SPE 140514,2011.
  • Related Articles

    [1]LI Zhaoying, YANG Xu, YANG Jie, XIE Tianjing, LI Jiangtao, FENG Zhigang. Synthesis and Property Evaluation of an Amphoteric Polymer Fracturing Fluid Thickener[J]. Petroleum Drilling Techniques, 2023, 51(2): 109-115. DOI: 10.11911/syztjs.2023044
    [2]XIONG Min. Origin Analysis and Elimination of the S-Shaped Strength Development Curve of Cement Slurry[J]. Petroleum Drilling Techniques, 2018, 46(3): 39-43. DOI: 10.11911/syztjs.2018064
    [3]ZHANG Junjiang, DU Linlin, YING Hailing, ZHANG Bin. Synthesis and Field Tests of High Temperature Resistant and Salt Tolerant Acid ThickenerTP-17[J]. Petroleum Drilling Techniques, 2017, 45(6): 93-98. DOI: 10.11911/syztjs.201706017
    [4]LIU Wei, ZENG Min, MA Kaihua, TAO Qian. The Study and Property Evaluation of a Lipophilic Cement Slurry With LQ Emulsion[J]. Petroleum Drilling Techniques, 2017, 45(1): 39-44. DOI: 10.11911/syztjs.201701007
    [5]Wang Xiaojing, Kong Xiangming, Zeng Min, Xu Chunhu, Zhao Zhiheng. Laboratory Research on a New Styrene Acrylic Latex Cement Slurry System[J]. Petroleum Drilling Techniques, 2014, 42(2): 80-84. DOI: 10.3969/j.issn.1001-0890.2014.02.016
    [6]Qu Jia, Yan Siming, Xu Jianhua. Application of Corrosion Resistant Latex Cement Slurry in Yuanba Area[J]. Petroleum Drilling Techniques, 2013, 41(3): 94-98. DOI: 10.3969/j.issn.1001-0890.2013.03.018
    [7]Yu Yongjin, Jin Jianzhou, Liu Shuoqiong, Yuan Jinping, Xu Ming. Research and Application of Thermostable Cement Slurry[J]. Petroleum Drilling Techniques, 2012, 40(5): 35-39. DOI: 10.3969/j.issn.1001-0890.2012.05.008
    [8]Zhao Baohui, Zou Jianlong, Liu Aiping, Lü Guangming, Gao Yonghui, Xu Peng. Performance Evaluation and Application of Novel Retarder BCR-260L[J]. Petroleum Drilling Techniques, 2012, 40(2): 55-58. DOI: 10.3969/j.issn.1001-0890.2012.02.011
    [9]Li Zaoyuan, Zhou Chao, Liu Wei, Wang Yan, Guo Xiaoyang. Laboratory Study on the Cement Slurry System with Short Waiting on Cement Time at Low Temperature[J]. Petroleum Drilling Techniques, 2012, 40(2): 46-50. DOI: 10.3969/j.issn.1001-0890.2012.02.009
  • Cited by

    Periodical cited type(13)

    1. 高健,汪海阁,宋世贵,宋先知,杨培福,张彦龙. 中国石油工程作业智能支持中心模式改革与初探. 钻采工艺. 2025(01): 37-45 .
    2. 史配铭,贺会锋,朱明明,孟凡金,屈艳平,王玉鹏. 苏里格南部气田Φ152.4 mm小井眼大斜度井快速钻井关键技术. 石油工业技术监督. 2024(09): 51-56 .
    3. 叶成,高世峰,鲁铁梅,屈沅治,戎克生,王常亮,任晗. 玛18井区水平井井壁失稳机理及强封堵钻井液技术研究. 石油钻采工艺. 2023(01): 38-46 .
    4. 刘召友,孙永强,郭百利. 苏里格气田?165.1mm小井眼二开一趟钻优快钻井关键技术. 西部探矿工程. 2023(12): 26-30 .
    5. 王平,沈海超. 加拿大M致密砂岩气藏高效开发技术. 石油钻探技术. 2022(01): 97-102 . 本站查看
    6. 王国娜,张海军,孙景涛,张巍,曲大孜,郝晨. 大港油田大型井丛场高效钻井技术优化与应用. 石油钻探技术. 2022(02): 51-57 . 本站查看
    7. 范家伟,袁野,李绍华,王彦秋,黄兰,尚钲凯,李君,陶正武. 塔里木盆地深层致密油藏地质工程一体化模拟技术. 断块油气田. 2022(02): 194-198 .
    8. 魏绍蕾,苏映宏,黄学斌,肖玉茹. 玛湖油田开发经验对特低渗-致密油藏开发的借鉴意义. 当代石油石化. 2021(02): 33-38 .
    9. 王忠良,周扬,文晓峰,龙斌,丁凡,陈邵维. 长庆油田小井眼超长水平段水平井钻井技术. 石油钻探技术. 2021(05): 14-18 . 本站查看
    10. 郝亚龙,葛云华,崔猛,纪国栋,殷鸽,黄家根. 钻头选型中的地层分层技术. 断块油气田. 2020(02): 248-252 .
    11. 史配铭,薛让平,王学枫,王万庆,石崇东,杨勇. 苏里格气田致密气藏水平井优快钻井技术. 石油钻探技术. 2020(05): 27-33 . 本站查看
    12. 张雄,余进,毛俊,刘祖磊. 准噶尔盆地玛东油田水平井高性能油基钻井液技术. 石油钻探技术. 2020(06): 21-27 . 本站查看
    13. 张瑞平,万教育,李彬,付仕,马静,刘冬. 直井段偏移对后期定向钻井作业的影响分析. 探矿工程(岩土钻掘工程). 2019(07): 28-33 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (8754) PDF downloads (13475) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return