WANG Yang, YUAN Qingyun, LI Li. Deep Penetrating Acid Fracturing Involving Self-Generated Acid in Carbonate Reservoirs of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(5): 90-93. DOI: 10.11911/syztjs.201605015
Citation: WANG Yang, YUAN Qingyun, LI Li. Deep Penetrating Acid Fracturing Involving Self-Generated Acid in Carbonate Reservoirs of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(5): 90-93. DOI: 10.11911/syztjs.201605015

Deep Penetrating Acid Fracturing Involving Self-Generated Acid in Carbonate Reservoirs of the Tahe Oilfield

More Information
  • Received Date: December 11, 2015
  • Revised Date: June 12, 2016
  • Reservoir conditions are deteriorating as carbonate reservoir exploration and development blocks of the Tahe Oilfield extend to the periphery of the oilfield. Under such circumstances, it is necessary to improve productivity through acid fracturing. Higher acid-rock reaction velocities of conventional acid fluids under high temperature, and large filtration losses would significantly affect penetration performances of acids. To solve this problem, a temperature-resistant self-generated acid system was developed to generate acids under high temperature with lower reaction velocity. It consists of highly polymerized carbonyl compound (agent A) and ammonium salt (agent B). Experimental results showed that the largest acid volume can be generated when agent A and B volume are equal; the self-generated acid has lower acid-rock reaction velocity and better acid fracture conductivity. In addition, it is highly compatible with formation water and the common acid system used in the Tahe Oilfield. This self-generated acid system has been used in 15 wells in the Tahe Oilfield. The production in the primary production period after acidizing was 1.5 to 2.5 times of that of adjacent wells (without self-generated acid fracturing). The results showed that the deep penetration acid fracturing of the self-generated acid can meet the requirement for deep penetration stimulation of carbonate reservoirs in the Tahe Oilfield.
  • [1]
    赵文娜,王宇宾,张烨.高温地面交联酸体系研究及其现场应用[J].科学技术与工程,2013,13(8):2190-2192,2197. ZHAO Wenna,WANG Yubin,ZHANG Ye.Study and application of the ground cross-linked acid with high-temperature resistance[J].Science Technology and Engineering,2013,13(8):2190-2192,2197.
    [2]
    江夏,张烨.塔河油田缝洞型碳酸盐岩油藏深度改造技术研究与应用[J].油气地质与采收率,2010,17(6):107-109. JIANG Xia,ZHANG Ye.The study and application of fracturing for ultra deep hole in crack-cave carbonate oil reservoir[J].Petroleum Geology and Recovery Efficiency,2010,17(6):107-110.
    [3]
    韩忠艳,耿宇迪,赵文娜,等.塔河油田缝洞型碳酸盐岩油藏水平井酸压技术[J].石油钻探技术,2009,37(6): 94-97. HAN Zhongyan,GENG Yudi,ZHAO Wenna,et al.Fractured-vuggy carbonate reservoirs in Tahe Oilfield[J].Petroleum Drilling Techniques,2009,37(6):94-97.
    [4]
    徐兵威,李克智,秦玉英,等.大牛地气田转向酸酸压技术研究与应用[J].断块油气田,2013,20(2):232-235 XU Bingwei,LI Kezhi,QIN Yuying,et al.Study and application of acid fracturing technology with diversion acid in Daniudi Gas Field[J].Fault-Block Oil Gas Field,2013,20(2):232-235.
    [5]
    孙骏,伊向艺,戴亚婷,等.酸液浓度对酸压改造效果影响实验研究:以胶凝酸为例[J].科学技术与工程,2014,14(33):196-200,206. SUN Jun,YI Xiangyi,DAI Yating,et al.Acid concentration of acid fracturing modification effects on experimental study:take gelled acid for example[J].Science Technology and Engineering,2014,14(33):196-200,206.
    [6]
    邝聃,郭建春,李勇明,等.酸液有效作用距离预测及影响因素分析[J].断块油气田,2009,16(5):97-99. KUANG Dan,GUO Jianchun,LI Yongming,et al.Predicting of effective distance of live acid for carbonate reservoir acid fracturing and its influence factors[J].Fault-Block Oil Gas Field,2009,16(5):97-99.
    [7]
    王元庆,林长志,王连生,等.低渗碳酸盐岩储层深度酸化酸液体系优选与评价[J].地质科技情报,2014,33(1):100-104. WANG Yuanqing,LIN Changzhi,WANG Liansheng,et al.Development and evaluation of deep penetrating acid fluid system for low permeability carbonate reservoir[J].Geological Science and Technology Information,2014,33(1):100-104.
    [8]
    刘友权,王琳,熊颖,等.高温碳酸盐岩自生酸酸液体系研究[J].石油与天然气化工,2011,40(4):367-369. LIU Youquan,WANG Lin,XIONG Ying,et al.Study on self-generating hydrochloric acid system for high-temperature carbonate rock[J].Chemical Engineering of Oil Gas,2011,40(4):367-369.
    [9]
    方裕燕,张烨,杨方政,等.一种高温就地自生酸酸液体系的性能评价[J].油田化学,2014,31(2):191-194,198. FANG Yuyan,ZHANG Ye,YANG Fangzheng,et al.Evaluation on an in-situ self-generating hydrochloric acid system in high-temperature acidizing and acid fracturing[J].Oilfield Chemistry,2014,31(2):191-194,198.
    [10]
    夏光,史斌,周际永.一种适合海上油田的自生酸体系[J].钻井液与完井液,2014,31(6):73-75. XIA Guang,SHI Bin,ZHOU Jiyong.A self-born acid formulation for offshore stimulation job[J].Drilling Fluid Completion Fluid,2014,31(6):73-75.
    [11]
    王玉芳,杜建军,牛新年.碳酸盐岩酸压裂缝导流能力随缝长变化规律研究[J].地质力学学报,2015,21(4):546-554. WANG Yufang, DU Jianjun,NIU Xinnian.Study on acid fracture conductivity with length variation in carbonate reservoir[J].Journal of Geomechanics,2015,21(4):546-554.
    [12]
    彭瑀,李勇明,赵金洲,等.缝洞型碳酸盐岩油藏酸蚀裂缝导流能力模拟与分析[J].石油学报,2015,36(4):606-611. PENG Yu,LI Yongming,ZHAO Jinzhou,et al.Simulation and analysis of acid-etched fracture conductivity of fracture-cavity carbonate reservoirs[J].Acta Petrolei Sinica,2015,36(4):606-611.
    [13]
    姚茂堂,牟建业,李栋,等.高温高压碳酸盐岩地层酸蚀裂缝长期导流能力实验研究[J].科学技术与工程,2015,15(2):193-195. YAO Maotang,MOU Jianye,LI Dong,et al.An experimental study of fracture long-term conductivity in high temperature and pressure carbonate formation[J].Science Technology and Engineering,2015,15 (2):193-195.
  • Related Articles

    [1]CUI Zhuang, HOU Bing. A Numerical Simulation for Damage Mechanical Behavior of Brazilian Splitting Test of Deep Shales[J]. Petroleum Drilling Techniques, 2024, 52(2): 218-228. DOI: 10.11911/syztjs.2024032
    [2]SHU Honglin, LIU Chen, LI Zhiqiang, DUAN Guifu, LAI Jianlin, JIANG Ming. Numerical Simulation of Complex Fracture Propagation in Shallow Shale Gas Fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77-84. DOI: 10.11911/syztjs.2023095
    [3]XIAN Yuxi, CHEN Chaofeng, FENG Meng, HAO Youzhi. Numerical Simulation of Multiphase Flow in Fracture Networks in Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(5): 94-100. DOI: 10.11911/syztjs.2021090
    [4]HUANG Yingsong. Solution of Nonlinear Seepage Model for Fracture Well Groupin Low Permeability Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(6): 96-102. DOI: 10.11911/syztjs.2019078
    [5]YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
    [6]Chen Xiuping, Zou Deyong, Li Dongjie, Lou Erbiao. Numerical Simulation Study on the Anti-Balling Performance of PDC Drill Bits[J]. Petroleum Drilling Techniques, 2015, 43(6): 108-113. DOI: 10.11911/syztjs.201506020
    [7]Nie Xiangrong, Yang Shenglai. Numerical Simulation of Cooling Damage to High Pour-Point Oil Reservoirs[J]. Petroleum Drilling Techniques, 2014, 42(1): 100-104. DOI: 10.3969/j.issn.1001-0890.2014.01.020
    [8]Xu Peng, Liu Xinyun, Shi Libao. Numerical Simulation for the Effect of Ground Stress on Explosive Fracturing[J]. Petroleum Drilling Techniques, 2013, 41(1): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.01.013
    [9]Li Hongqian. Numerical Simulation on the Annular Flow Induced by Spiral Casing Centralizer[J]. Petroleum Drilling Techniques, 2012, 40(2): 25-29. DOI: 10.3969/j.issn.1001-0890.2012.02.005
    [10]Li Chunying, Wu Xiaodong. Numerical Simulation of Remaining Oil Distribution in Cyclothem[J]. Petroleum Drilling Techniques, 2012, 40(1): 88-91. DOI: 10.3969/j.issn.1001-0890.2012.01.018
  • Cited by

    Periodical cited type(35)

    1. 付海峰,刘鹏林,陈祝兴,翁定为,马泽元,李军. 基于避免断层激活机制的组合压裂模式研究. 石油机械. 2024(01): 88-97 .
    2. 刘豪,刘怀亮,刘宇,曹伟,连威,李军. 页岩气多级压裂断层动态滑移规律研究. 石油机械. 2024(02): 65-74 .
    3. 刘怀亮,樊子潇,刘宇,连威,席岩,张小军. 基于震源机制的断层滑移量计算方法. 世界石油工业. 2024(05): 40-47 .
    4. 林魂,宋西翔,杨兵,袁勇,张健强,孙新毅. 温-压耦合作用下断层滑移对套管应力的影响. 石油机械. 2023(06): 136-142+158 .
    5. 孟胡,吕振虎,王晓东,张辉,申颍浩,葛洪魁. 基于压裂参数优化的套管剪切变形控制研究. 断块油气田. 2023(04): 601-608 .
    6. 张伟,李军,张慧,王典,李托,刘怀亮. 断层滑移对套管剪切变形的影响规律及防控措施. 断块油气田. 2023(05): 734-742 .
    7. 文山师,尹陈,石学文,张洞君,韩福盛,熊财富. 天然裂缝主导模式下泸州龙马溪组页岩水力压裂多尺度破裂特征. 地球物理学进展. 2023(05): 2172-2181 .
    8. 赵欢,李玮,唐鹏飞,王晓,张明慧,王剑波. 压裂工况下近井筒地应力及套管载荷分布规律研究. 石油钻探技术. 2023(05): 106-111 . 本站查看
    9. 孟胡,申颍浩,朱万雨,李小军,雷德荣,葛洪魁. 四川盆地昭通页岩气水平井水力压裂套管外载分析. 特种油气藏. 2023(05): 166-174 .
    10. 陈朝伟,周文高,项德贵,谭鹏,宋建,陈晓军,任乐佳,黄浩. 预防页岩气套变的橡胶组合套管研制及其抗剪切性能评价. 天然气工业. 2023(11): 131-136 .
    11. 张旭,张哲平,杨尚谕,王雪刚,宋琳. 基于特征值和弧长法计算套管抗挤强度. 钻采工艺. 2022(01): 35-40 .
    12. 陈朝伟,项德贵. 四川盆地页岩气开发套管变形一体化防控技术. 中国石油勘探. 2022(01): 135-141 .
    13. 吴建忠,乔智国,慈建发,何龙,连威,李军. 基于震源机制的套管变形量控制方法研究. 石油管材与仪器. 2022(03): 24-31 .
    14. 刘鹏林,李军,席岩,连威,张小军,郭雪利. 页岩断层滑移量计算模型及影响因素研究. 石油机械. 2022(08): 74-80 .
    15. 郭雪利,沈吉云,武刚,靳建洲,纪宏飞,徐明,刘慧婷,黄昭. 韧性材料对页岩气压裂井水泥环界面完整性影响. 表面技术. 2022(12): 232-242 .
    16. 陈朝伟,黄锐,曾波,宋毅,周小金. 四川盆地长宁页岩气区块套管变形井施工参数优化分析. 石油钻探技术. 2021(01): 93-100 . 本站查看
    17. 李军,赵超杰,柳贡慧,张辉,张鑫,任凯. 页岩气压裂条件下断层滑移及其影响因素. 中国石油大学学报(自然科学版). 2021(02): 63-70 .
    18. 张平,何昀宾,刘子平,童亨茂,邓才,任晓海,张宏祥,李彦超,屈玲,付强,王向阳. 页岩气水平井套管的剪压变形试验与套变预防实践. 天然气工业. 2021(05): 84-91 .
    19. 李晓蓉,古臣旺,冯永存,丁泽晨. 考虑井筒加载历史的压裂过程中套管剪切变形数值模拟研究. 石油科学通报. 2021(02): 245-261 .
    20. 张鑫,李军,刘鹏林,郭雪利,韩葛伟. 断层滑移条件下页岩气井套管变形影响因素分析. 科学技术与工程. 2021(16): 6651-6656 .
    21. 陈朝伟,张浩哲,周小金,曹虎. 四川长宁页岩气套管变形井微地震特征分析. 石油地球物理勘探. 2021(06): 1286-1292+1198 .
    22. 张慧,李军,张小军,张鑫,连威. 页岩气井压裂液进入断层的途径及防控措施. 断块油气田. 2021(06): 750-754+760 .
    23. 林志伟,钟守明,宋琳,王雪刚,林铁军,于浩,史涛. 体积压裂改造非对称性对套管损坏影响机理. 特种油气藏. 2021(06): 158-164 .
    24. 陈朝伟,房超,朱勇,项德贵. 四川页岩气井套管变形特征及受力模式. 石油机械. 2020(02): 126-134 .
    25. 连威,李军,柳贡慧,席岩,韩葛伟. 水力压裂过程中页岩强度折减对套管变形的影响分析. 石油管材与仪器. 2020(04): 46-50 .
    26. 蒋振源,陈朝伟,张平,张丰收. 断块滑动引起的套管变形及影响因素分析. 石油管材与仪器. 2020(04): 30-37 .
    27. 范宇,黄锐,曾波,陈朝伟,周小金,项德贵,宋毅. 四川页岩气水力压裂诱发断层滑动和套管变形风险评估. 石油科学通报. 2020(03): 366-375 .
    28. 陈朝伟,曹虎,周小金,苟其勇,张浩哲. 四川盆地长宁区块页岩气井套管变形和裂缝带相关性. 天然气勘探与开发. 2020(04): 123-130 .
    29. 席岩,李军,柳贡慧,曾义金,李剑平. 页岩气水平井多级压裂过程中套管变形研究综述. 特种油气藏. 2019(01): 1-6 .
    30. 乔磊,田中兰,曾波,杨恒林,付盼,杨松. 页岩气水平井多因素耦合套变分析. 断块油气田. 2019(01): 107-110 .
    31. 高德利,刘奎. 页岩气井井筒完整性若干研究进展. 石油与天然气地质. 2019(03): 602-615 .
    32. 罗庆,黄华,徐菲,张立. 新型组合井况监测仪在普光高含硫气井的应用. 断块油气田. 2019(02): 240-243 .
    33. 陈朝伟,项德贵,张丰收,安孟可,尹子睿,蒋振源. 四川长宁—威远区块水力压裂引起的断层滑移和套管变形机理及防控策略. 石油科学通报. 2019(04): 364-377 .
    34. 周波,毛蕴才,查永进,汪海阁. 体积压裂水锤效应对页岩气井屏障完整性影响及对策. 石油钻采工艺. 2019(05): 608-613 .
    35. 郭雪利,李军,柳贡慧,陈朝伟,任凯,来东风. 基于震源机制的页岩气压裂井套管变形机理. 断块油气田. 2018(05): 665-669 .

    Other cited types(32)

Catalog

    Article Metrics

    Article views (7374) PDF downloads (10491) Cited by(67)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return