JIANG Tingxue, BIAN Xiaobing. The Novel Technology of Shale Gas Play Evaluation——Sweetness Calculation Method[J]. Petroleum Drilling Techniques, 2016, 44(4): 1-6. DOI: 10.11911/syztjs.201604001
Citation: JIANG Tingxue, BIAN Xiaobing. The Novel Technology of Shale Gas Play Evaluation——Sweetness Calculation Method[J]. Petroleum Drilling Techniques, 2016, 44(4): 1-6. DOI: 10.11911/syztjs.201604001

The Novel Technology of Shale Gas Play Evaluation——Sweetness Calculation Method

More Information
  • Received Date: June 27, 2016
  • The evaluation results of a shale gas play based on geologic and engineering sweet spots can only show the probability of gas production after shale gas fracturing, while the production capacity after fracturing has no significant positive correlation with the sweet spot indicator. For this reason, the concept of geologic and engineering sweetness is proposed and corresponding calculation method is also provided in order to develop a "sweetness index". It is necessary to set the benchmark for the highest geologic sweetness and engineering sweetness of the area to be evaluated, namely the collection of a series of optimum geological parameter combinations and engineering parameters, then to calculate the Euclid approach degree to indicate the similarity between the parameter combinations and the benchmark. Taking it as the geologic sweetness and engineering sweetness, we need to determine weighted distribution of geologic sweetness and engineering sweetness by means of grey correlation in order to obtain the aggregative sweetness indicator, or a "sweetness index". The concept was applied to seven wells in Jiaoshiba Block of Fuling Shale Gas Field and results showed that gas production of clusters from each segment has significant positive correlation with geologic sweetness and engineering sweetness. According to results of the study and applications, geologic sweetness and engineering sweetness can be used in the quantitative evaluation of the gas production capacity of a shale gas play, which improves rationality and reliability of segment cluster selection in staged fracturing of horizontal shale gas wells and results in significant cost reduction and effectiveness of shale gas fracturing.
  • [1]
    黄进,吴雷泽,游园,等.涪陵页岩气水平井工程甜点评价与应用[J].石油钻探技术,2016,44(3):16-20.HUANG Jin,WU Leize,YOU Yuan,et al.The evaluation and application of engineering sweet spots in a horizontal well in the Fuling Shale Gas Reservoir[J].Petroleum Drilling Techniques,2016,44(3):16-20.
    [2]
    蒋廷学.页岩油气水平井压裂裂缝复杂性指数研究及应用展望[J].石油钻探技术,2013,41(2):7-12.JIANG Tingxue.The fracture complexity index of horizontal wells in shale oil and gas reservoirs[J].Petroleum Drilling Techniques,2013,41(2):7-12.
    [3]
    QUINN J B,QUINN G D.Indentation brittleness of ceramics:a fresh approach[J].Journal of Materials Science,1997,32(16):4331-4346.
    [4]
    蒋廷学,卞晓冰,苏瑗,等.页岩可压性指数评价新方法及应用[J].石油钻探技术,2014,42(5):16-20.JIANG Tingxue,BIAN Xiaobing,SU Yuan,et al.A new method for evaluating shale fracability index and its application[J].Petroleum Drilling Techniques,2014,42(5):16-20.
    [5]
    王汉青,陈军斌,张杰,等.基于权重分配的页岩气储层可压性评价新方法[J].石油钻探技术,2016,44(3):88-94.WANG Hanqing,CHEN Junbin,ZHANG Jie,et al.A new method of fracability evaluation of shale gas reservoir based on weight allocation[J].Petroleum Drilling Techniques,2016,44(3):88-94.
    [6]
    HOWELL J V.Glossary of geology and related sciences[M].Washington:American Geological Institute,1957:99-102.
    [7]
    JARVIE D.Finding bypassed or overlooked pay zones using geochemistry techniques[R].IPTC 12918,2008.
    [8]
    WANG F P,REED R M.Pore networks and fluid flow in gas shales[R].SPE 124253,2009.
    [9]
    RICKMAN R,MULLEN M J,PETRE J E,et al.A practical use of shale petrophysics for stimulation design optimization:all shale plays are not clones of the Barnett Shale[R].SPE 115258,2008.
    [10]
    蒋廷学,卞晓冰,王海涛,等.页岩气水平井分段压裂排采规律研究[J].石油钻探技术,2013,41(5):21-25.JIANG Tingxue,BIAN Xiaobing,WANG Haitao,et al.Flow back mechanism study of multi-stage fracturing of shale gas horizontal wells[J].Petroleum Drilling Techniques,2013,41(5):21-25.
    [11]
    杨建,付永强,陈鸿飞,等.页岩储层的岩石力学特征[J].天然气工业,2012,32(7):12-14.YANG Jian,FU Yongqiang,CHEN Hongfei,et al.Rock mechanical characteristics of shale reservoirs[J].Natural Gas Industry,2012,32(7):12-14.
    [12]
    李庆辉,陈勉,金衍,等.页岩气储层岩石力学特性及脆性评价[J].石油钻探技术,2012,40(4):17-22.LI Qinghui,CHEN Mian,JIN Yan,et al.Rock mechanical properties and brittleness evaluation of shale gas reservoir[J].Petroleum Drilling Techniques,2012,40(4):17-22.
    [13]
    李庆辉,陈勉,金衍,等.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报,2012,31(8):1680-1685.LI Qinghui,CHEN Mian,JIN Yan,et al.Indoor evaluation method for shale brittleness and improvement[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1680-1685.
    [14]
    蒋廷学,卞晓冰,袁凯,等.页岩气水平井分段压裂优化设计新方法[J].石油钻探技术,2014,42(2):1-6.JIANG Tingxue,BIAN Xiaobing,YUAN Kai,et al.A new method in staged fracturing design optimization for shale gas horizontal wells[J].Petroleum Drilling Techniques,2014,42(2):1-6.
    [15]
    卞晓冰,蒋廷学,贾长贵,等.基于施工曲线的页岩气井压后评估新方法[J].天然气工业,2016,36(2):60-65.BIAN Xiaobing,JIANG Tingxue,JIA Changgui,et al.A new post-fracturing evaluation method for shale gas wells based on fracturing curves[J].Natural Gas Industry,2016,36(2):60-65.
  • Related Articles

    [1]CUI Zhuang, HOU Bing. A Numerical Simulation for Damage Mechanical Behavior of Brazilian Splitting Test of Deep Shales[J]. Petroleum Drilling Techniques, 2024, 52(2): 218-228. DOI: 10.11911/syztjs.2024032
    [2]ZHU Zuyang. Numerical Simulation and Test of Velocity Imaging for Remote Detection Acoustic Logging While Drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 35-40. DOI: 10.11911/syztjs.2022113
    [3]ZHANG Yiqun, HU Xiao, WU Xiaoya, LI Gensheng, TIAN Shouceng, ZHAO Shuai. Experimental and Numerical Simulation Study of Natural Gas Hydrate Erosion by Swirling Jet[J]. Petroleum Drilling Techniques, 2022, 50(3): 24-33. DOI: 10.11911/syztjs.2022046
    [4]LIU Jianhua, LING Wenxue, WANG Heng. Study on Rock Breaking Mechanism and Field Test of Triangular Prismatic PDC Cutters[J]. Petroleum Drilling Techniques, 2021, 49(5): 46-50. DOI: 10.11911/syztjs.2021040
    [5]ZHANG Yifei, WEI Yong, YU Houquan, CHEN Qiang, LIU Guoquan, ZHANG Xue. Simulation and Experimental Studies on the Influencing Factors of a Thermal Flowmeter with Constant Temperature Difference[J]. Petroleum Drilling Techniques, 2021, 49(2): 121-126. DOI: 10.11911/syztjs.2021023
    [6]MA Lanrong, CHENG Guangming, DAI Wenchao. Design and Testing of the Stimulation Tool for Pinnate Branch Tubes[J]. Petroleum Drilling Techniques, 2020, 48(4): 72-77. DOI: 10.11911/syztjs.2020061
    [7]XIE Han, KUANG Yuchun, QIN Chao. The Finite Element Simulation and Test of Rock Breaking by Non-Planar PDC Cutting Cutter[J]. Petroleum Drilling Techniques, 2019, 47(5): 69-73. DOI: 10.11911/syztjs.2019043
    [8]Ke Ke, Zhang Hui, Zhou Yuyang, Wang Lei, Feng Shilun. The Development of Testing Simulators for Conductor Jets Running in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2015, 43(2): 33-37. DOI: 10.11911/syztjs.201502006
    [9]Xu Peng, Liu Xinyun, Shi Libao. Numerical Simulation for the Effect of Ground Stress on Explosive Fracturing[J]. Petroleum Drilling Techniques, 2013, 41(1): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.01.013
    [10]Liu Gang, Sun Jin, He Baosheng, Tian Ji, Geng Zhanli. Design and Field Test of Surface Monitoring System for Directional Wells Anti-Collision[J]. Petroleum Drilling Techniques, 2012, 40(1): 7-11. DOI: 10.3969/j.issn.1001-0890.2012.01.002
  • Cited by

    Periodical cited type(25)

    1. 胡宏涛,管震,张宝权,赖刚,邹卓峰,曾杰. 基于实时数据的钻井KPI自动分析研究. 中国设备工程. 2024(24): 76-79 .
    2. 付群超,曾烃详,陈沛,钟鹏,王瑞科,杜坤. 基于随机森林回归模型的钻井作业周期预测. 录井工程. 2024(04): 39-47 .
    3. 王学强,樊建春,杨哲,罗双平,徐志凯,蔡正伟,熊毅. 树增强型贝叶斯模型提升溢流预警时间提前量. 石油钻采工艺. 2024(04): 413-428 .
    4. 晏琰,段慕白,黄浩. 基于趋势线法的钻井风险预警技术研究. 钻采工艺. 2023(02): 170-174 .
    5. 何淼,陈欢,张党生,许明标,陈鑫. 基于深度自编码器的钻井工况智能识别研究. 长江大学学报(自然科学版). 2023(03): 84-93 .
    6. 梅舜豪. 基于人工智能的钻井工程异常预警系统研究及应用. 石油化工自动化. 2023(04): 59-63 .
    7. 张菲菲,崔亚辉,于琛,张同颖,陈俊,颜寒. 基于机器学习的钻井工况识别技术现状及发展. 长江大学学报(自然科学版). 2023(04): 53-65+143 .
    8. 张禾,池紫欣. 基于BSMOTE-SVM算法的溢流风险评价. 控制工程. 2023(12): 2173-2178 .
    9. 夏文鹤,赵宗旭,李皋,李永杰,李宬晓,陈向东. 基于非线性分类网络的气体钻井风险智能识别方法. 信息与控制. 2023(04): 455-465 .
    10. 毛光黔,宋先知,丁燕,崔猛,刘雨龙,祝兆鹏. 基于梯度提升决策树算法的钻井工况识别方法. 石油钻采工艺. 2023(05): 532-539 .
    11. 王海涛,王建华,邱晨,毛金涛,李辉. 基于双向长短期记忆循环神经网络和条件随机场的钻井工况识别方法. 石油钻采工艺. 2023(05): 540-547+554 .
    12. Wen-He Xia,Zong-Xu Zhao,Cheng-Xiao Li,Gao Li,Yong-Jie Li,Xing Ding,Xiang-Dong Chen. Intelligent risk identification of gas drilling based on nonlinear classification network. Petroleum Science. 2023(05): 3074-3084 .
    13. Ying Qiao,Hong-Min Xu,Wen-Jun Zhou,Bo Peng,Bin Hu,Xiao Guo. A BiGRU joint optimized attention network for recognition of drilling conditions. Petroleum Science. 2023(06): 3624-3637 .
    14. 韩玉娇. 基于AdaBoost机器学习算法的大牛地气田储层流体智能识别. 石油钻探技术. 2022(01): 112-118 . 本站查看
    15. 胡万俊,夏文鹤,李永杰,蒋俊,李皋,陈一健. 气体钻井随钻安全风险智能识别方法. 石油勘探与开发. 2022(02): 377-384 .
    16. 刘胜娃,曹湘华. 基于决策树的钻井工况智能识别方法. 新型工业化. 2022(01): 28-30 .
    17. HU Wanjun,XIA Wenhe,LI Yongjie,JIANG Jun,LI Gao,CHEN Yijian. An intelligent identification method of safety risk while drilling in gas drilling. Petroleum Exploration and Development. 2022(02): 428-437 .
    18. 王钰豪,郝家胜,张帆,魏强,彭知南,段慕白. 钻井溢流风险的自适应LSTM预警方法. 控制理论与应用. 2022(03): 441-448 .
    19. 殷启帅,杨进,曹博涵,龙洋,陈柯锦,范梓伊,贺馨悦. 基于长短期记忆神经网络的深水钻井工况实时智能判别模型. 石油钻采工艺. 2022(01): 97-104 .
    20. 胡志强,杨进,王磊,侯绪田,张桢翔,姜萌磊. 钻井工况智能识别与时效分析技术. 石油钻采工艺. 2022(02): 241-246 .
    21. 赵春兰,屈瑶,王兵,范翔宇,赵鹏斐,李屹,何婷. 一种基于2D-CNN深度学习的钻井事故等级预测新方法. 天然气工业. 2022(12): 95-105 .
    22. 夏田,郭建斌,赵一号. 基于改进支持向量机的选区激光熔化参数优化的研究. 热加工工艺. 2021(04): 29-31+37 .
    23. 庞淼,雷银,卢杭,黄琦,何仕鹏. 降低钻井溢流智能化预警误报率的方法探索. 石油工业技术监督. 2021(10): 44-49 .
    24. 柳海啸,刘芳,代文星,冯一,巩永刚,李明明. 基于大数据分析技术的钻井提效实践. 石油钻采工艺. 2021(04): 436-441 .
    25. 刘兆年,赵颖,孙挺. 渤海区域基于数据驱动的钻井提速. 西南石油大学学报(自然科学版). 2020(06): 35-41 .

    Other cited types(15)

Catalog

    Article Metrics

    Article views (4398) PDF downloads (5643) Cited by(40)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return