SUN Xiao, WANG Haizhu, LI Yingjie, ZHENG Yong, LU Qun. Sand-Carrying Experiments with Supercritical CO2 in a Horizontal Annulus[J]. Petroleum Drilling Techniques, 2022, 50(3): 17-23. DOI: 10.11911/syztjs.2021099
Citation: SUN Xiao, WANG Haizhu, LI Yingjie, ZHENG Yong, LU Qun. Sand-Carrying Experiments with Supercritical CO2 in a Horizontal Annulus[J]. Petroleum Drilling Techniques, 2022, 50(3): 17-23. DOI: 10.11911/syztjs.2021099

Sand-Carrying Experiments with Supercritical CO2 in a Horizontal Annulus

More Information
  • Received Date: September 07, 2021
  • Revised Date: January 14, 2022
  • Available Online: February 11, 2022
  • According to the similarity principle, a device for sand-carrying tests was developed to determine the sand-carrying performance of supercritical CO2 in the horizontal annulus and analyze the effects of key operating parameters on the sand-carrying performance. The device was employed to explore the influence of the injection mass flow, sand concentration, outlet pressure, and fluid temperature of supercritical CO2 on the sand migration in the horizontal annulus. The results showed that supercritical CO2 could effectively carry sand in the horizontal annulus by means of suspension transport, and the increase in its mass flow could enhance the turbulence intensity of the fluid in the annulus and improve the sand-carrying effect by suspension transport. In a high sand concentration, sand beds were likely to occur at the bottom of the annulus, which reduced the open area and raised the sand transport velocity. Under the same injection condition, the sand transport velocity in the annulus decreased with the increase of outlet pressure, but the amplitude of reduction is gradually lowering. In addition, a rise in fluid temperature was conducive to the accumulation reduction of sand in the annulus in an appropriate temperature range. The research results can provide a reference for optimizing the key construction parameter design in drilling and fracturing with supercritical CO2.

  • [1]
    王海柱,沈忠厚,李根生. 超临界CO2开发页岩气技术[J]. 石油钻探技术,2011,39(3):30–35. doi: 10.3969/j.issn.1001-0890.2011.03.005

    WANG Haizhu, SHEN Zhonghou, LI Gensheng. Feasibility analysis on shale gas exploitation with supercritical CO2[J]. Drilling Petroleum Techniques, 2011, 39(3): 30–35. doi: 10.3969/j.issn.1001-0890.2011.03.005
    [2]
    王海柱,李根生,郑永,等. 超临界CO2压裂技术现状与展望[J]. 石油学报,2020,41(1):116–126. doi: 10.7623/syxb202001011

    WANG Haizhu, LI Gensheng, ZHENG Yong, et al. Research status and prospects of supercritical CO2 fracturing technology[J]. Acta Petrolei Sinica, 2020, 41(1): 116–126. doi: 10.7623/syxb202001011
    [3]
    MIDDLETON R S, CAREY J W, CURRIER R P, et al. Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2[J]. Applied Energy, 2015, 147: 500–509. doi: 10.1016/j.apenergy.2015.03.023
    [4]
    ZHOU Junping, NAN Hu, XIAN Xuefu, et al. Supercritical CO2 fracking for enhanced shale gas recovery and CO2 sequestration: results, status and future challenges[J]. Advances in Geo-Energy Research, 2019, 3(2): 207–224. doi: 10.26804/ager.2019.02.10
    [5]
    王在明,邱正松,朱宽亮. 超临界二氧化碳钻井流体井筒温度传递特性[J]. 钻井液与完井液,2010,27(6):1–3.

    WANG Zaiming, QIU Zhengsong, ZHU Kuanliang. Research on features of wellbore temperature transmission for supercritical CO2 drilling fluid[J]. Drilling Fluid and Completion Fluid, 2010, 27(6): 1–3.
    [6]
    罗攀登,李涵宇,翟立军,等. 塔河油田超临界CO2压裂井筒与裂缝温度场[J]. 断块油气田,2019,26(2):225–230.

    LUO Pandeng, LI Hanyu, ZHAI Lijun, et al. Supercritical CO2 fracturing wellbore and fracture temperature field in Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 225–230.
    [7]
    张艳,楼一珊,牟春国,等. 超临界二氧化碳压裂过程中注入压力对致密砂岩力学特征的影响[J]. 石油钻采工艺,2019,41(2):242–248.

    ZHANG Yan, LOU Yishan, MOU Chunguo, et al. Effects of supercritical carbon dioxide fracturing on rock mechanics characteristics of tight sandstone gas reservoirs[J]. Oil Drilling & Production Technology, 2019, 41(2): 242–248.
    [8]
    丁璐,倪红坚. 超临界二氧化碳钻井时瞬态波动压力[J]. 断块油气田,2020,27(1):117–121.

    DING Lu,NI Hongjian. Transient surge and swab pressure analysis of supercritical carbon dioxide drilling[J]. Fault-Block Oil & Gas Field, 2020, 27(1): 117–121.
    [9]
    张越琪,苟利鹏,乔文波,等. 致密油藏超临界二氧化碳吞吐开发特征实验研究[J]. 特种油气藏,2021,28(1):130–135.

    ZHANG Yueqi, GOU Lipeng, QIAO Wenbo, et al. Experimental study on development characteristics of supercritical CO2 huff and puff in tight oil reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 130–135.
    [10]
    仲冠宇,左罗,蒋廷学,等. 页岩气井超临界二氧化碳压裂起裂压力预测[J]. 断块油气田,2020,27(6):710–714.

    ZHONG Guanyu,ZUO Luo,JIANG Tingxue,et al. Fracture initiation pressure prediction for shale gas well fracturing with super-critical carbon dioxide[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 710–714.
    [11]
    程宇雄,李根生,王海柱,等. 超临界CO2 连续油管喷射压裂可行性分析[J]. 石油钻采工艺,2013,35(6):73–77.

    CHENG Yuxiong, LI Gensheng, WANG Haizhu, et al. Feasibility analysis on coiled-tubing jet fracturing with supercritical CO2[J]. Oil Drilling & Production Technology, 2013, 35(6): 73–77.
    [12]
    王海柱,李根生,沈忠厚,等. 超临界CO2钻井与未来钻井技术发展[J]. 特种油气藏,2012,19(2):1–5. doi: 10.3969/j.issn.1006-6535.2012.02.001

    WANG Haizhu, LI Gensheng, SHEN Zhonghou, et al. Supercritical carbon dioxide drilling and the development of future drilling technology[J]. Special Oil & Gas Reservoirs, 2012, 19(2): 1–5. doi: 10.3969/j.issn.1006-6535.2012.02.001
    [13]
    李根生,王海柱,沈忠厚,等. 超临界CO2射流在石油工程中应用研究与前景展望[J]. 中国石油大学学报(自然科学版),2013,37(5):76–80.

    LI Gensheng, WANG Haizhu, SHEN Zhonghou, et al. Application investigations and prospects of supercritical carbon dioxide jet in petroleum engineering[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(5): 76–80.
    [14]
    WANG Haizhu, LI Gensheng, SHEN Zhonghou, et al. Experiment on rock breaking with supercritical carbon dioxide jet[J]. Journal of Petroleum Science & Engineering, 2015, 127: 305–310.
    [15]
    WANG Ruihe, DU Yukun, NI Hongjian, et al. Hydrodynamic analysis of suck-in pulsed jet in well drilling[J]. Journal of Hydrodynamics, Ser. B, 2011, 23(1): 34–41. doi: 10.1016/S1001-6058(10)60085-6
    [16]
    DU Yukun, WANG Ruihe, NI Hongjian, et al. Determination of rock-breaking performance of high-pressure supercritical carbon dioxide jet[J]. Journal of Hydrodynamics, 2012, 24(4): 554–560. doi: 10.1016/S1001-6058(11)60277-1
    [17]
    ZHENG Yong, WANG Haizhu, YANG Bing, et al. CFD-DEM simulation of proppant transport by supercritical CO2 in a vertical planar fracture[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103647. doi: 10.1016/j.jngse.2020.103647
    [18]
    金军,王冉. 超临界CO2注入与页岩气储层相互作用的研究进展[J]. 断块油气田,2018,25(3):363–366.

    JIN Jun,WANG Ran. Research progress of supercritical CO2 injection and its interaction with shale gas reservoirs[J]. Fault-Block Oil & Gas Field, 2018, 25(3): 363–366.
    [19]
    王瑞和,倪红坚,宋维强,等. 超临界二氧化碳钻井基础研究进展[J]. 石油钻探技术,2018,46(2):1–9.

    WANG Ruihe, NI Hongjian, SONG Weiqiang, et al. The development of fundamental research on supercritical carbon dioxide drilling[J]. Petroleum Drilling Techniques, 2018, 46(2): 1–9.
    [20]
    沈忠厚,王海柱,李根生. 超临界CO2钻井水平井段携岩能力数值模拟[J]. 石油勘探与开发,2011,38(2):233–236. doi: 10.1016/S1876-3804(11)60028-1

    SHEN Zhonghou, WANG Haizhu, LI Gensheng. Numerical simulation of the cutting-carrying ability of supercritical carbon dioxide drilling at horizontal section[J]. Petroleum Exploration and Develoment, 2011, 38(2): 233–236. doi: 10.1016/S1876-3804(11)60028-1
    [21]
    李良川,王在明,邱正松,等. 超临界二氧化碳钻井流体携岩特性实验[J]. 石油学报,2011,32(2):355–359.

    LI Liangchuan, WANG Zaiming, QIU Zhengsong, et al. An experimental study on carrying cuttings features for supercritical carbon dioxide drilling fluid[J]. Acta Petrolei Sinica, 2011, 32(2): 355–359.
    [22]
    霍洪俊,王瑞和,倪红坚,等. 超临界二氧化碳在水平井钻井中的携岩规律研究[J]. 石油钻探技术,2014,42(2):12–17.

    HUO Hongjun, WANG Ruihe, NI Hongjian, et al. Cuttings carrying pattern of supercritical carbon dioxide in horizontal wells[J]. Petroleum Drilling Techniques, 2014, 42(2): 12–17.
    [23]
    HUO Hongjun, WANG Ruihe, NI Hongjian, et al. Study of critical annulus up-returning velocity of cuttings carried by supercritical CO2 in deviated well[J]. Journal of CO2 Utilization, 2017, 20: 105–112. doi: 10.1016/j.jcou.2017.04.013
    [24]
    宋维强,王瑞和,倪红坚,等. 水平井段超临界CO2携岩数值模拟[J]. 中国石油大学学报(自然科学版),2015,39(2):63–68.

    SONG Weiqiang, WANG Ruihe, NI Hongjian, et al. Numerical simulation of cuttings transport capability of supercritical carbon dioxide in horizontal wells[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(2): 63–68.
    [25]
    宋维强,霍洪俊,王瑞和,等. 直井段超临界二氧化碳携岩数值模拟分析[J]. 重庆大学学报,2015,38(3):100–106. doi: 10.11835/j.issn.1000-582X.2015.03.014

    SONG Weiqiang, HUO Hongjun, WANG Ruihe, et al. Numerical simulation of cutting-carrying efficiency of supercritical carbon dioxide in vertical well[J]. Journal of Chongqing University, 2015, 38(3): 100–106. doi: 10.11835/j.issn.1000-582X.2015.03.014
    [26]
    王海柱. 超临界CO2钻井井筒流动模型与携岩规律研究[D]. 北京: 中国石油大学(北京), 2011.

    WANG Haizhu. Research on Wellbore Flow Model and Cutting-carrying Law of Supercritical CO2 Drilling [D]. Beijing: China University of Petroleum-Beijing, 2011.
  • Related Articles

    [1]CHEN Zuo, LI Shuangming, CHEN Zan, WANG Haitao. Hydraulic Fracture Initiation and Extending Tests in Deep Shale Gas Formations and Fracturing Design Optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70-76. DOI: 10.11911/syztjs.2020060
    [2]YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
    [3]Tian Shouceng, Chen Liqiang, Sheng Mao, Li Gensheng, Liu Qingling. Modeling of Fracture Initiation for Staged Hydraulic Jetting Fracturing[J]. Petroleum Drilling Techniques, 2015, 43(5): 31-36. DOI: 10.11911/syztjs.201505006
    [4]Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015
    [5]Liu Lihong, Wang Juanjuan, Gao Chunhua. Research and Application of a Multicomponent Modified Instant Guar Fracturing Fluid[J]. Petroleum Drilling Techniques, 2015, 43(3): 116-119. DOI: 10.11911/syztjs.201503021
    [6]Peng Chunyao. Mechanism of Interaction between Hydraulic Fractures and Weak Plane in Layered Shale[J]. Petroleum Drilling Techniques, 2014, 42(4): 32-36. DOI: 10.3969/j.issn.1001-0890.2014.04.006
    [7]Shao Shangqi, Tian Shouceng, Li Gensheng, He Zhenguo. Fracture Spacing Optimization for Fracture-Network Fracturing in Horizontal Wells[J]. Petroleum Drilling Techniques, 2014, 42(1): 86-90. DOI: 10.3969/j.issn.1001-0890.2014.01.017
    [8]Jin Zhirong, Zhang Huali, Zhou Jidong, Wang Jintao. Research and Application of Massive Combined Sand Fracturing for Thin Interbedded Reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(6): 86-89. DOI: 10.3969/j.issn.1001-0890.2013.06.017
    [9]An Fengjun, Zhao Anjun, Zhou Huizhi, Duan Guifu. Effect Analysis of Secondary Sand Fracturing Using Four-Dimensional Seismic Imaging of Micro-Fractures[J]. Petroleum Drilling Techniques, 2013, 41(5): 98-101. DOI: 10.3969/j.issn.1001-0890.2013.05.019
    [10]Xu Peng, Liu Xinyun, Shi Libao. Numerical Simulation for the Effect of Ground Stress on Explosive Fracturing[J]. Petroleum Drilling Techniques, 2013, 41(1): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.01.013
  • Cited by

    Periodical cited type(16)

    1. 邓华根,韩成,王应好. 海上页岩油探井测试大规模压裂技术及实践. 化学工程与装备. 2025(02): 38-42 .
    2. 刘臣,卢海兵,陈钊,葛婧楠,孙挺. 大段多簇压裂改造技术优化与页岩气储层分析应用. 粘接. 2024(04): 121-124 .
    3. 王遵察,程万,艾昆,胡清海,石育钊. 井工厂井网部署与压裂模式发展现状与展望. 钻探工程. 2024(03): 9-19 .
    4. 戴佳成,李根生,孙耀耀,李敬彬,王天宇. 基于水平井的径向井开采页岩油产能模拟和参数分析. 石油科学通报. 2024(04): 604-616 .
    5. 杨南鹏,范雨航,高彬,张世锋. 暂堵技术在致密砂岩气藏压裂中的应用. 能源与环保. 2023(01): 168-174 .
    6. 邹龙庆,何怀银,杨亚东,龚新伟,肖剑锋,苌北. 页岩气水平井暂堵球运移特性数值模拟研究. 石油钻探技术. 2023(05): 156-166 . 本站查看
    7. 侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势. 石油钻探技术. 2023(05): 66-77 . 本站查看
    8. 戴佳成,王天宇,田康健,李敬彬,田守嶒,李根生. 页岩油储层径向井立体压裂产能预测模型研究. 石油科学通报. 2023(05): 588-599 .
    9. 滕卫卫,古小龙,王博,张谷畅,吴宝成,李建民,葛洪魁. 段内多簇暂堵压裂中暂堵球直径优化研究. 钻采工艺. 2023(05): 61-67 .
    10. 董小卫,田志华,李一强,汪志,韩光耀,唐家财,刘帅. 水平井桥塞分段压裂管外光纤监测技术. 石油钻采工艺. 2023(05): 649-654 .
    11. 陈志明,赵鹏飞,曹耐,廖新维,王佳楠,刘辉. 页岩油藏压裂水平井压–闷–采参数优化研究. 石油钻探技术. 2022(02): 30-37 . 本站查看
    12. 蔡萌,唐鹏飞,魏旭,刘宇,张浩,张宝岩,耿丹丹. 松辽盆地古龙页岩油复合体积压裂技术优化. 大庆石油地质与开发. 2022(03): 156-164 .
    13. 樊平天,刘月田,冯辉,周东魁,李平,周丰,秦静,余维初,史黎岩. 致密油新一代驱油型滑溜水压裂液体系的研制与应用. 断块油气田. 2022(05): 614-619 .
    14. 王成俊,张磊,展转盈,倪军,高怡文,王维波. 基于裂缝介质转变为多孔颗粒介质的调剖方法与矿场应用. 断块油气田. 2022(05): 709-713 .
    15. 李臻,李真,程嘉瑞,崔璐. 高速射流孔眼冲刷腐蚀扩孔规律试验研究. 石油化工腐蚀与防护. 2022(05): 1-5+41 .
    16. 李臻,李真,程嘉瑞,崔璐. 高速射流孔眼冲刷腐蚀扩孔规律实验研究. 山东化工. 2022(20): 1-4+8 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (334) PDF downloads (56) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return