Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015
Citation: Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015

Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well

More Information
  • Received Date: November 04, 2014
  • Revised Date: April 13, 2015
  • There are many cleats, fractures and other structural weak planes in coal seams. Fractures may origin from coal body or cleat cracks during hydraulic fracturing. Consequently, mechanisms related to fracture initiation may be significantly different from those observed in conventional reservoir formations. In this regard, a new calculation model of fracture initiation pressure suitable for gas wells in coal-bed methane formations should be established. Considering the delivery network distribution characteristics of the coal seam cleat system and change of cleats in their spatial positions, the stress distribution around the perforated holes and cleats walls was determined based on the rock mechanics and fracture mechanics theory. According to conditions related to tensile and shear failures, the calculation model for fracture initiation pressure of coal was established under different well completion methods. The calculation model was used for two fractured wells and the fracture initiation pressure difference between the calculated value and the measured value in the conditions of open hole completion and perforated completion were 3.96% and 4.72%, respectively. It could be seen that the calculated results coincided well with measured values. The results showed that a seam fracture could be generated from cleats, and the fracture initiation pressures were closely related to coal bed cleat angle, coefficient of internal friction of cleat walls, coal bed horizontal principle stress differences and other factors.
  • [1]
    Fallahzadeh S H,Shadizadeh S R,Pourafshary P.Dealing with the challenges of hydraulic fracture initiation in deviated-cased perforated boreholes[R].SPE 132797,2010.
    [2]
    Haimson B,Fairhurst C.Initiation and extension of hydraulic fractures in rocks[J].SPE Journal,1967,7(3):310-318.
    [3]
    Yew C H,Li Y.Fracturing of a deviated well[R].SPE 16930,1987.
    [4]
    Hossain M M,Rahman M K,Rahman S S.Hydraulic fracture initiation and propagation:roles of wellbore trajectory,perforation and stress regimes[J].Journal of Petroleum Science and Engineering,2000,27(3/4):129-149.
    [5]
    金衍,张旭东,陈勉.天然裂缝地层中垂直井水力裂缝起裂压力模型研究[J].石油学报,2005,26(6):113-114,118. Jin Yan,Zhang Xudong,Chen Mian.Initiation pressure models for hydraulic fracturing of vertical wells in naturally fractured formation[J].Acta Petrolei Sinica,2005,26(6):113-114,118.
    [6]
    金衍,陈勉,张旭东.天然裂缝地层斜井水力裂缝起裂压力模型研究[J].石油学报,2006,27(5):124-126. Jin Yan,Chen Mian,Zhang Xudong.Hydraulic fracturing initiation pressure models for directional wells in naturally fractured formation[J].Acta Petrolei Sinica,2006,27(5):124-126.
    [7]
    赵金洲,任岚,胡永全,等.裂缝性地层射孔井破裂压力计算模型[J].石油学报,2012,33(5):841-845. Zhao Jinzhou,Ren Lan,Hu Yongquan,et al.A calculation model of breakdown pressure for perforated wells in fractured formations[J].Acta Petrolei Sinica,2012,33(5):841-845.
    [8]
    赵金洲,任岚,胡永全,等.裂缝性地层水力裂缝张性起裂压力分析[J].岩石力学与工程学报,2013,32(增刊1):2855-2862. Zhao Jinzhou,Ren Lan,Hu Yongquan,et al.Hydraulic fracture tensile initiation pressure analysis for fractured formations[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(supplement 1):2855-2862.
    [9]
    任岚,赵金洲,胡永全,等.裂缝性储层射孔井水力裂缝张性起裂特征分析[J].中南大学学报:自然科学版,2013,44(2):707-713. Ren Lan,Zhao Jinzhou,Hu Yongquan,et al.Tensile initiation characteristics analysis of hydraulic fracture in perforated well of fractured formations[J].Journal of Central South University:Science and Technology,2013,44(2):707-713.
    [10]
    唐书恒,朱宝存,颜志丰.地应力对煤层气井水力压裂裂缝发育的影响[J].煤炭学报,2011,36(1):65-69. Tang Shuheng,Zhu Baocun,Yan Zhifeng.Effect of crustal stress on hydraulic fracturing in coalbed methane wells[J].Journal of China Coal Society,2011,36(1):65-69.
    [11]
    陈勉,金衍,张广清.石油工程岩石力学[M].北京:科学出版社,2008:60-65. Chen Mian,Jin Yan,Zhang Guangqing.Petroleum engineering rock mechanics[M].Beijing:Science Press,2008:60-65.
    [12]
    Jaeger J C,Cook N W,Zimmerman R W.Fundamentals of rock mechanics[M].Oxford:Blackwell Publishing,2007:237-242.
  • Related Articles

    [1]YU Libin, ZHANG Zhigang, JIANG Zhaomin, XU Hui, ZHANG Hongfu, HAN Xurui. Development and Field Testing of the Bionic Peristaltic Drilling Tool[J]. Petroleum Drilling Techniques, 2025, 53(1): 55-59. DOI: 10.11911/syztjs.2024113
    [2]HUANG Zhe. Development and Field Test of Probe-Type Intelligent Bit Parameter Measurement Device[J]. Petroleum Drilling Techniques, 2024, 52(4): 34-43. DOI: 10.11911/syztjs.2024004
    [3]LIU Huanle, XUE Shifeng, SUN Zhiyang, ZHOU Chao, FAN Jie. Structural Parameter Optimization and Field Test of a Jetting and Helical Combination Drain Tool[J]. Petroleum Drilling Techniques, 2023, 51(3): 90-96. DOI: 10.11911/syztjs.2022116
    [4]WU Xiaoguang, HUANG Zhongwei, LI Gensheng, SHI Huaizhong, LIU Shoujun, LIU Xin. Research and Field Test of Ultra-Short Radius Horizontal Drilling Technology Combining Coiled Tubing and Flexible BHA[J]. Petroleum Drilling Techniques, 2022, 50(6): 56-63. DOI: 10.11911/syztjs.2022119
    [5]LIU Pingquan, LI Leibing, SHI Yucen, HAN Long. Research and Field Test of Electrically Controlled Sidewall Deep Penetrating Perforating Technology[J]. Petroleum Drilling Techniques, 2021, 49(3): 55-61. DOI: 10.11911/syztjs.2021055
    [6]SU Zhenguo, TANG Zhijun. The Design and Field Testing of Two-Stage and Two-Speed Drilling Tools[J]. Petroleum Drilling Techniques, 2019, 47(1): 59-64. DOI: 10.11911/syztjs.2019010
    [7]YANG Haibo, HOU Ting, FENG Dejie, TENG Zhaozheng, WU Liugen. Research and Field Test of Non-Drilling Plug Expandable Casing Patching Technology[J]. Petroleum Drilling Techniques, 2017, 45(5): 73-77. DOI: 10.11911/syztjs.201705013
    [8]ZHENG Xiaozhi, GU Lei, MA Lanrong, ZHANG Guoan. Performance and Field Tests of Rotary Expandable Liner Hanger[J]. Petroleum Drilling Techniques, 2016, 44(3): 55-60. DOI: 10.11911/syztjs.201603010
    [9]Wang Zaiming, Zhu Kuanliang, Feng Jinghai, Wu Yan, Shen Yuanyuan. Development and Field Test of High-Temperature Gel Valve[J]. Petroleum Drilling Techniques, 2015, 43(4): 78-82. DOI: 10.11911/syztjs.201504014
    [10]Yang Liqiang, Ba Lujun, Xue Jiangping. Development and Field Experiment on PDM with Uniform Wall Thickness[J]. Petroleum Drilling Techniques, 2012, 40(2): 109-112. DOI: 10.3969/j.issn.1001-0890.2012.02.021
  • Cited by

    Periodical cited type(17)

    1. 杨雪,廖锐全,汪瀛. 带压作业用自降解凝胶性能的评价. 油田化学. 2023(02): 211-216 .
    2. 彭博一,于培志,蔡靖儒,曹伶. 高温油藏聚合物凝胶的研究与应用. 应用化工. 2022(10): 2965-2969 .
    3. 向朝纲,贺彬,李华坤,陈鑫,高利华. 抗高温可固化凝胶段塞油气阻隔技术. 天然气勘探与开发. 2022(04): 70-77 .
    4. 吴波,黄志安,王委. D1-1HF井溢漏同存安全钻完井新技术应用. 钻采工艺. 2021(06): 132-135 .
    5. 沈园园,王在明,朱宽亮,吴艳. 溶胶-凝胶法制备核壳结构的延迟破胶剂. 钻井液与完井液. 2020(01): 121-126 .
    6. 黎凌,卫俊佚,张谦. 用于精细控压钻井的无机凝胶隔离塞的研制及现场试验. 石油钻探技术. 2019(01): 45-51 . 本站查看
    7. 罗发强,韩子轩,柴龙,陈晓飞. 抗高温气滞塞技术的研究与应用. 钻井液与完井液. 2019(02): 165-169 .
    8. 汪瀛,程立,廖锐全,李振,张康卫,袁龙. 低温带压作业用高强度凝胶性能评价. 油田化学. 2019(03): 400-404 .
    9. 潘元,程立,廖锐全,李振,张康卫,袁龙. 一种带压作业化学封堵材料的制备与评价. 油田化学. 2019(04): 582-586+593 .
    10. 李云峰,徐吉,徐小峰,朱宽亮,吴艳. 南堡2号构造深层潜山水平井钻井完井技术. 石油钻探技术. 2018(02): 10-16 . 本站查看
    11. 吴艳,王在明,徐吉,沈园园,李云峰. 高温流体段塞油气封隔技术的研究与应用. 天然气技术与经济. 2018(04): 38-41+82-83 .
    12. 柴龙,林永学,金军斌,韩子轩. 塔河油田外围高温高压井气滞塞防气窜技术. 石油钻探技术. 2018(05): 40-45 . 本站查看
    13. 程立,李振,廖锐全,张慢来,刘德基. 不压井作业封堵用高强度冻胶体系的室内性能评价. 油田化学. 2017(03): 408-411 .
    14. 鲁晓华,程立,廖锐全,张慢来,李振. 新型冻胶封隔材料的制备及性能. 油田化学. 2017(04): 576-580+609 .
    15. 李圆,于培志,安玉秀,于铁峰,赵宇光. 高分子聚合物凝胶的性能研究与应用. 钻井液与完井液. 2017(05): 33-38 .
    16. 张弛. 高温凝胶化学堵漏技术在XJ-3井封层堵漏作业中的应用. 能源与环保. 2017(05): 77-80 .
    17. 李志勇,陈帅,陶冶,马攀,杨超. 抗硫化氢高强度冻胶阀试验研究. 石油钻探技术. 2016(02): 65-69 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (3285) PDF downloads (4243) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return