Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015
Citation: Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015

Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well

More Information
  • Received Date: November 04, 2014
  • Revised Date: April 13, 2015
  • There are many cleats, fractures and other structural weak planes in coal seams. Fractures may origin from coal body or cleat cracks during hydraulic fracturing. Consequently, mechanisms related to fracture initiation may be significantly different from those observed in conventional reservoir formations. In this regard, a new calculation model of fracture initiation pressure suitable for gas wells in coal-bed methane formations should be established. Considering the delivery network distribution characteristics of the coal seam cleat system and change of cleats in their spatial positions, the stress distribution around the perforated holes and cleats walls was determined based on the rock mechanics and fracture mechanics theory. According to conditions related to tensile and shear failures, the calculation model for fracture initiation pressure of coal was established under different well completion methods. The calculation model was used for two fractured wells and the fracture initiation pressure difference between the calculated value and the measured value in the conditions of open hole completion and perforated completion were 3.96% and 4.72%, respectively. It could be seen that the calculated results coincided well with measured values. The results showed that a seam fracture could be generated from cleats, and the fracture initiation pressures were closely related to coal bed cleat angle, coefficient of internal friction of cleat walls, coal bed horizontal principle stress differences and other factors.
  • [1]
    Fallahzadeh S H,Shadizadeh S R,Pourafshary P.Dealing with the challenges of hydraulic fracture initiation in deviated-cased perforated boreholes[R].SPE 132797,2010.
    [2]
    Haimson B,Fairhurst C.Initiation and extension of hydraulic fractures in rocks[J].SPE Journal,1967,7(3):310-318.
    [3]
    Yew C H,Li Y.Fracturing of a deviated well[R].SPE 16930,1987.
    [4]
    Hossain M M,Rahman M K,Rahman S S.Hydraulic fracture initiation and propagation:roles of wellbore trajectory,perforation and stress regimes[J].Journal of Petroleum Science and Engineering,2000,27(3/4):129-149.
    [5]
    金衍,张旭东,陈勉.天然裂缝地层中垂直井水力裂缝起裂压力模型研究[J].石油学报,2005,26(6):113-114,118. Jin Yan,Zhang Xudong,Chen Mian.Initiation pressure models for hydraulic fracturing of vertical wells in naturally fractured formation[J].Acta Petrolei Sinica,2005,26(6):113-114,118.
    [6]
    金衍,陈勉,张旭东.天然裂缝地层斜井水力裂缝起裂压力模型研究[J].石油学报,2006,27(5):124-126. Jin Yan,Chen Mian,Zhang Xudong.Hydraulic fracturing initiation pressure models for directional wells in naturally fractured formation[J].Acta Petrolei Sinica,2006,27(5):124-126.
    [7]
    赵金洲,任岚,胡永全,等.裂缝性地层射孔井破裂压力计算模型[J].石油学报,2012,33(5):841-845. Zhao Jinzhou,Ren Lan,Hu Yongquan,et al.A calculation model of breakdown pressure for perforated wells in fractured formations[J].Acta Petrolei Sinica,2012,33(5):841-845.
    [8]
    赵金洲,任岚,胡永全,等.裂缝性地层水力裂缝张性起裂压力分析[J].岩石力学与工程学报,2013,32(增刊1):2855-2862. Zhao Jinzhou,Ren Lan,Hu Yongquan,et al.Hydraulic fracture tensile initiation pressure analysis for fractured formations[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(supplement 1):2855-2862.
    [9]
    任岚,赵金洲,胡永全,等.裂缝性储层射孔井水力裂缝张性起裂特征分析[J].中南大学学报:自然科学版,2013,44(2):707-713. Ren Lan,Zhao Jinzhou,Hu Yongquan,et al.Tensile initiation characteristics analysis of hydraulic fracture in perforated well of fractured formations[J].Journal of Central South University:Science and Technology,2013,44(2):707-713.
    [10]
    唐书恒,朱宝存,颜志丰.地应力对煤层气井水力压裂裂缝发育的影响[J].煤炭学报,2011,36(1):65-69. Tang Shuheng,Zhu Baocun,Yan Zhifeng.Effect of crustal stress on hydraulic fracturing in coalbed methane wells[J].Journal of China Coal Society,2011,36(1):65-69.
    [11]
    陈勉,金衍,张广清.石油工程岩石力学[M].北京:科学出版社,2008:60-65. Chen Mian,Jin Yan,Zhang Guangqing.Petroleum engineering rock mechanics[M].Beijing:Science Press,2008:60-65.
    [12]
    Jaeger J C,Cook N W,Zimmerman R W.Fundamentals of rock mechanics[M].Oxford:Blackwell Publishing,2007:237-242.
  • Related Articles

    [1]LIU Jinlu, LI Jun, LIU Gonghui, LI Hui, YANG Hongwei. Prediction Model of Wellbore Temperature Field during Deepwater Cementing Circulation Stage[J]. Petroleum Drilling Techniques, 2024, 52(4): 66-74. DOI: 10.11911/syztjs.2024065
    [2]YU Haitang, DING Yi, LIU Yanmei, PENG Miao, LIANG Lixi, YU Xiaolong. A Dynamical Spontaneous Imbibition Model for ShaleConsidering Hydration Damage[J]. Petroleum Drilling Techniques, 2023, 51(5): 139-148. DOI: 10.11911/syztjs.2023054
    [3]WANG Tao, LI Yao, HE Hui. A Coupling Allocation Model of Finely Layered Water Injection Considering Pressure Constraint[J]. Petroleum Drilling Techniques, 2023, 51(2): 95-101. DOI: 10.11911/syztjs.2023012
    [4]CHEN Dong, WANG Nanzhe, YE Zhihui, ZHANG Jialiang. Propped Fracture Conductivity Evolution under a Combination of Compaction and Embedment: Establishing a Model and Analyzing the Influencing Factors[J]. Petroleum Drilling Techniques, 2018, 46(6): 82-89. DOI: 10.11911/syztjs.2018148
    [5]WENG Dingwei, FU Haifeng, LU Yongjun, ZHENG Lihui, MA Jianjun. A Model for Predicting the Volume of Stimulated Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(1): 95-100. DOI: 10.11911/syztjs.201601018
    [6]Tian Shouceng, Chen Liqiang, Sheng Mao, Li Gensheng, Liu Qingling. Modeling of Fracture Initiation for Staged Hydraulic Jetting Fracturing[J]. Petroleum Drilling Techniques, 2015, 43(5): 31-36. DOI: 10.11911/syztjs.201505006
    [7]He Tao, Guo Jianchun, Lu Cong, Jing Yuquan. Optimization of Shut-in Time between the First and Second Fracturing by means of Pressure Decline Analysis[J]. Petroleum Drilling Techniques, 2015, 43(2): 110-115. DOI: 10.11911/syztjs.201502019
    [8]He Miao, Liu Gonghui, Li Jun, Li Mengbo, Zha Chunqing, Li Gen. Solution and Analysis of Fully Transient Temperature and Pressure Coupling Model for Multiphase Flow[J]. Petroleum Drilling Techniques, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005
    [9]Wu Shinan, Zhang Jinlong, Ding Shidong, Liu Jian. Revision of Mathematical Model of Foamed Cement Slurry Density under Down-Hole Conditions[J]. Petroleum Drilling Techniques, 2013, 41(2): 28-33. DOI: 10.3969/j.issn.1001-0890.2013.02.006
    [10]Meng Hongxia, Chen Dechun, Pan Zhihua, Wu Xiaodong. Productivity Calculation Models and Stimulation Ratio Analysis for Explosive Fracturing Wells[J]. Petroleum Drilling Techniques, 2012, 40(6): 62-66. DOI: 10.3969/j.issn.1001-0890.2012.06.013
  • Cited by

    Periodical cited type(11)

    1. 庞涛,姜在炳,惠江涛,贾秉义. 煤系水平井定向射孔压裂裂缝扩展机制. 煤田地质与勘探. 2024(04): 68-75 .
    2. 安果涛,谢昕,孔祥伟,王存武. 射孔间距-倾角对深煤层水力裂缝扩展影响的离散元分析. 科学技术与工程. 2024(18): 7623-7629 .
    3. 杨兆中,杨晨曦,李小刚,闵超. 基于灰色关联的逼近理想解排序法的煤层气井重复压裂选井——以沁水盆地柿庄南区块为例. 科学技术与工程. 2020(12): 4680-4686 .
    4. 马东民,王传涛,夏玉成,张嘉睿,邵凯,杨甫. 大佛寺井田煤层气井压裂参数优化方案. 西安科技大学学报. 2019(02): 263-269 .
    5. 李昀昀,傅小康,李千山,孙宁蔚. 我国煤层气排采技术研究现状. 石油化工应用. 2019(04): 1-4+10 .
    6. 孙宁蔚. 基于灰色关联的沁水盆地煤层气井排采特征分析. 石油化工应用. 2019(11): 7-9+32 .
    7. 杨兆中,刘云锐,张平,李小刚,易良平. 煤层气直井地层破裂压力计算模型. 石油学报. 2018(05): 578-586 .
    8. 杨新新,王伟锋,姜帅,杨浩珑. 抗高温高密度低伤害压裂液体系. 断块油气田. 2017(04): 583-586 .
    9. 张快乐,刘化普. 利用数值试井反演井组低渗透储层参数. 中外能源. 2017(09): 44-48 .
    10. 李玉伟,贾丹,高睿,高长龙,米洁翰,艾池. 煤岩复杂裂缝长期导流能力实验研究. 天然气与石油. 2017(01): 94-99+11-12 .
    11. 陈德飞,孟祥娟,周玉,张慧芳,江春明. 岩石破坏后力学特性及其对天然气开采的影响. 断块油气田. 2016(03): 405-408 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (3285) PDF downloads (4243) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return