重力热管井筒伴热技术在稠油热采中的应用研究

车洪昌, 鄢德华, 任耀宇, 刘永建

车洪昌, 鄢德华, 任耀宇, 刘永建. 重力热管井筒伴热技术在稠油热采中的应用研究[J]. 石油钻探技术, 2011, 39(2): 108-111. DOI: 10.3969/j.issn.1001-0890.2011.02.022
引用本文: 车洪昌, 鄢德华, 任耀宇, 刘永建. 重力热管井筒伴热技术在稠油热采中的应用研究[J]. 石油钻探技术, 2011, 39(2): 108-111. DOI: 10.3969/j.issn.1001-0890.2011.02.022
Research on Wellbore Gravity Heat Pipe Heating Technology in Thermal Recovery of Heavy Oil[J]. Petroleum Drilling Techniques, 2011, 39(2): 108-111. DOI: 10.3969/j.issn.1001-0890.2011.02.022
Citation: Research on Wellbore Gravity Heat Pipe Heating Technology in Thermal Recovery of Heavy Oil[J]. Petroleum Drilling Techniques, 2011, 39(2): 108-111. DOI: 10.3969/j.issn.1001-0890.2011.02.022

重力热管井筒伴热技术在稠油热采中的应用研究

Research on Wellbore Gravity Heat Pipe Heating Technology in Thermal Recovery of Heavy Oil

  • 摘要: 在分析重力热管改善抽油井井筒热损失原理的基础上,进行了重力热管井筒伴热室内物理模拟试验和矿场试验。室内复配出的工质A液,与水基工质相比,具有液体密度小、蒸气密度高的优点,适合进行重力热管传热。室内模拟重力热管井筒温度分布结果表明,重力热管冷凝段与蒸发段的温度之比大于0.7,能够有效改善井筒流体温度分布。矿场试验结果表明,在蒸汽吞吐过程中采用重力热管井筒伴热技术,能够有效减小井筒流体温度下降的幅度,延长油井的生产时间,增加蒸汽吞吐周期的产量。
  • 渤海P油田位于渤海中南部海域,由多个断块组合而成,在纵横向上具有多套油水系统,属于典型的疏松砂岩稠油油藏,以陆相河流相、三角洲相沉积为主,平面及纵向非均质性强。该油田采用大段防砂、强注强采的开发模式,水驱开发效率低,目前油田综合含水率已达83.1%,但采出程度仅15.1%;另外,由于注入水水质差、注水强度高,致使注水井无机堵塞严重,注水压力长期居高不下,难以满足配注要求[1]

    为解决该问题,经广泛调研发现,层内生成CO2调驱技术无需天然气源、注入工艺简单,能够很好地克服常规CO2驱的局限性,得到国内外学者的广泛关注,并开展了相关研究和矿场试验[2-6]。1999年,Kh. Kh. Gumersky等人[7]最先发现碳酸(氢)盐在地层条件下能够与酸发生反应生成大量的CO2,并于2000–2004年在Novo-Pokursky油田开展了矿场驱油试验,3个月累计增油量超过2 700 t;2010年,B. J. B. Shiau等人[8]系统研究了可在储层自发生成CO2的氨基甲酸铵和氨基甲酸甲酯等化学药剂及其调驱机理。国内也相继开展了层内生成CO2调驱技术研究和先导性试验,邓建华等人[9]依据层内生成CO2的机理研制了KD-79单液生CO2体系和KD-79双液生CO2体系,驱替试验表明,这2种体系都可以起到调剖、驱油的作用;赵仁保等人[10]利用填砂管进行了层内自生CO2的试验研究,结果表明向生CO2体系中添加起泡剂可有效控制CO2气体在高渗管中的窜流;2008年3月开始,河南油田魏岗和江河井区的9口井实施了层内生CO2深部解堵增注措施,措施后平均注入压力为3.64 MPa,累计增注量61 179 m3,有效期长达322 d[11];2016年,李文轩等人[12]通过室内试验筛选出以盐酸和小苏打为主剂的层内自生CO2解堵体系,矿场试验表明,该体系具有优良的的暂堵分流能力和增油效果。

    笔者针对渤海P油田的储层特征及开发特点,提出采用集调剖、驱油、增注于一体的层内生成CO2调驱技术,然后通过室内试验优选了适用于渤海P油田的生CO2体系及配套的泡沫体系,并将其规模化应用于现场,取得了良好的调整注水井吸水剖面、降压增注和稳油控水效果,为渤海P油田的高效开发提供了技术手段。

    层内生成CO2调驱技术通过向目的层分段塞交替注入生气剂和释气剂,2种药剂在油层内发生化学反应放热并释放出CO2气体,与注入的发泡体系共同作用于油层。该技术在保留常规CO2驱优点的同时克服了其缺点,能够同时实现近井调剖、解堵和远井驱油的功能,其具体作用原理如下:

    1)解堵作用。生气剂和释气剂反应放热可解除有机堵塞,起降压增注作用。

    2)调剖作用。生成的CO2与发泡体系作用形成CO2泡沫,并与添加的稳定剂配合,可以封堵高渗层,改善水驱效果。

    3)驱油作用。CO2溶于原油,使原油体积膨胀,原油黏度和油水界面张力降低。

    4)降黏作用。生气剂与释气剂发生化学反应放出的热量可以降低原油的黏度。

    针对渤海P油田储层非均质性严重和近井地带污染等问题,根据调剖、解堵和驱油一体化的思路,进行层内生气调剖关键技术研究,主要进行了生气体系优选、泡沫体系筛选和稳定剂优选。

    利用化学反应釜考察了生气剂和释气剂对生气量和生气速率的影响,以获得最优生气体系。层内生气试验装置如图1所示。

    图  1  层内生气试验装置
    A. 水浴锅;B. 广口烧瓶;C. 酸式滴定管;D. 二口烧瓶;E. 量筒;a. 清水;b. 生气剂溶液;c. 释气剂或缓释体系
    Figure  1.  Experimental device of in-situ CO2

    分别选用相同浓度的生气剂A,B和C与释气剂D,E和F,预先将生气剂A,B和C溶液置于图1中的广口烧瓶中,然后用酸式滴定管加入相同浓度的释气剂D,E和F,考察其生气量和生气效率,60 ℃下的生气效果见表1

    表  1  不同生气体系的生气效果(60 ℃)
    Table  1.  Statistics of system components and gas generation effects (60℃)
    生气体系生气量/mL理论生气量/mL生气效率,%
    生气剂A+释气剂D27929096.2
    生气剂B+释气剂D28029096.6
    生气剂C+释气剂D27929096.2
    生气剂A+释气剂E24229083.4
    生气剂B+释气剂E24929085.9
    生气剂C+释气剂E26729092.1
    生气剂A+释气剂F 6629022.8
    生气剂B+释气剂F 7829026.9
    生气剂C+释气剂F12329042.4
    下载: 导出CSV 
    | 显示表格

    表1可以看出,生气剂A,B和C与释气剂D反应的生气量最大,生气效率最高,生气量在280 mL左右,生气效率均达到96.0%以上。考虑经济性和稳定性,选择生气剂A+释气剂D的生气体系。

    在100 mL模拟地层水中分别加入不同量的发泡剂,配制成发泡剂溶液,采用Waring Blender法考察其发泡体积和析液半衰期,结果如图2图3所示。

    图  2  不同发泡剂在不同加量下的发泡体积
    Figure  2.  Changes of foaming volume with the concentration of different foaming agents
    图  3  不同发泡剂在不同加量下的析液半衰期
    Figure  3.  Changes of half-life time with the concentration of different foaming agents

    图2图3可以看出,发泡剂加量较小时,不同发泡剂的发泡体积和析液半衰期均随着加量增加而增加;但发泡剂加量过大时,其发泡体积和析液半衰期反而略有下降。这是因为发泡剂加量增加到一定程度时,其分子在气液表面排列的无序度增加,致密度降低,造成泡沫液膜强度减弱,稳定性随之降低。从图2图3还可以看出:发泡剂2~5不仅发泡体积大,且泡沫的稳定性好,因此选取发泡剂2~5进行复配,进行下一步筛选。

    发泡剂加量控制在0.3%,将发泡剂2~5分别以2∶1和1∶2的比例进行复配,考察复配后的发泡性能,结果如图4所示(图4中,发泡体系1为发泡剂2和发泡剂3按2∶1复配;发泡体系2为发泡剂2和发泡剂3按1∶2复配;发泡体系3为发泡剂2和起泡剂4按2∶1复配;发泡体系4为发泡剂2和发泡剂4按1∶2复配;发泡体系5为发泡剂2和发泡剂5按2∶1复配;发泡体系6为发泡剂2和发泡剂5按1∶2复配;发泡体系7为发泡剂3和发泡剂4按2∶1复配;发泡体系8为发泡剂3和发泡剂4按1∶2复配;发泡体系9为发泡剂3和发泡剂5按2∶1复配;发泡体系10为发泡剂3和发泡剂5按1∶2复配;发泡体系11为发泡剂4和发泡剂5按2∶1复配;发泡体系12为发泡剂4和发泡剂5按1∶2复配)。从图4可以看出,发泡体系5(发泡剂2和发泡剂5以2∶1的比例复配)的发泡体积为740 mL,析液半衰期达219 s,表现出优良的协同效应。因此,选0.2%发泡剂2+0.1%发泡剂5作为发泡体系。

    图  4  不同发泡体系的发泡体积和半衰期
    Figure  4.  Foam volume and half-life of different foaming systems

    为保证泡沫在渗流过程中能封堵优势渗流通道,需要加入稳定剂。利用渗透率2 000~10 000 mD的填砂模型进行流动试验,考察泡沫加入不同稳定剂后对不同渗透率渗流通道的封堵能力,结果如图5所示。从图5可以看出,泡沫加入稳定剂1对高渗渗流通道的封堵率基本保持在90%左右,封堵性能最好;泡沫加入稳定剂2对低渗渗流通道的封堵性较好,但由于其溶解性好,易被冲刷,封堵率随渗透率升高下降很快,稳定性较差;泡沫加入稳定剂3和稳定剂4的封堵性能比加入稳定剂1差,但比加入稳定剂2强。综上所述,选用稳定剂1。

    图  5  泡沫加入不同稳定剂后的封堵性能
    Figure  5.  Comparison of plugging performance of plugging systems with different stabilizers

    渤海P油田先后进行了5批次15井组的层内生成CO2调驱作业,累计注入调剖剂15 423 m3,措施后累计增注量69 986 m3,累计增油量达33 413 m3,措施成功率100%,取得了显著的调剖、降压增注和稳油控水效果。下面以渤海P油田B1注采井组为例介绍该技术的具体应用情况。

    根据渤海P油田B1注采井组的地质油藏特征,利用室内优选的生气体系和发泡体系,进行层内生成CO2方案设计,以降低该井组注水井的注入压力,增加注水量的同时提高驱油效率,提高油井产油量。具体步骤为:

    1)根据注水井和生产井的井距、注水层有效厚度、油层孔隙度等油藏资料,利用层内生成CO2数学模型,计算出措施井注入药剂的量。

    2)根据井组的具体情况确定药剂的段塞组合,以确保药剂在地层中能充分混合反应。B1注采井组注水井B1井的注入段塞组合如表2所示。

    表  2  B1井层内生成CO2注入段塞组合
    Table  2.  Slug formation form in-situ CO2 generation in Well B1
    注入顺序生气剂体积/m3隔离水体积/m3释气剂体积/m3
    段塞160360
    段塞260360
    段塞360360
    段塞430330
    段塞530330
    段塞630330
    段塞730330
    下载: 导出CSV 
    | 显示表格

    3)按照设计在钻井液池中配制药剂溶液,分别使用钻井泵和酸化泵以油管正注的方式将生气剂、释气剂和稳定剂笼统注入目的层位,作业方式为不动管柱作业,施工周期短,作业成本低。

    4)注入过程中根据现场地层吸水测试结果不断优化药剂注入排量。前期控制注入速度,使药剂优先进入高渗层进行封堵;后期适当提高注入速度,启动低渗层。

    表3为B1注采井组注水井B1井应用层内生成CO2调驱技术前后吸水剖面测试结果。由表3可知,应用层内生成CO2调驱技术后,强吸水层的吸水能力降低,弱吸水层的吸水能力增强,如吸水能力较弱的第4小层的吸水量占比大幅提高(从5%增至73%),而主力吸水层第3小层的吸水量占比显著减小(从69%降至13%),表明层内生成CO2调驱技术取得了良好的调剖效果。

    表  3  层内生成CO2调驱技术应用前后注水井B1井吸水剖面测试结果
    Table  3.  Comparison of water absorption profile in Well B1 before and after measurement of in-situ CO2 generation
    小层号吸水量占比,%
    应用前应用后
    125 5
    2 1 9
    36913
    4 573
    下载: 导出CSV 
    | 显示表格

    应用层内生成CO2调驱技术后,注水井B1井的视吸水指数提高了24.6%,累计增注量达20 721 m3。与注水井B1井对应的8口受效生产井累计净增油量2 430 m3,考虑递减后的增油量4 724 m3,平均有效期长达5个月。

    1)针对渤海P油田注水开发存在的问题,采用了集调剖、驱油和增注于一体的层内生成CO2调驱技术,通过室内试验优选出了层内生成CO2体系配方:生气剂A+释气剂D构成生气体系,0.2%起泡剂2+0.1%发泡剂5+稳定剂1构成发泡体系。

    2)现场应用表明,层内生成CO2调驱技术可以解决渤海P油田注水开发存在的问题,建议在该油田推广应用。

  • 期刊类型引用(16)

    1. 郭天魁,郝彤,张跃龙,陈铭,曲占庆,王文宇,吕明锟,杨仁杰,戴海静. 井筒-射孔-裂缝全耦合双暂堵压裂实验装置研发与应用. 实验技术与管理. 2025(01): 161-168 . 百度学术
    2. 华剑,余泽坤,李晓鹏,谭欢. 高温高黏度暂堵剂液滴形态与成型效率. 科学技术与工程. 2025(05): 1904-1912 . 百度学术
    3. 俞天喜,孙锡泽,陈强,陈江萍,徐克山,张敬春,周航,王博. 不同岩性储层裂缝封堵规律实验. 断块油气田. 2024(02): 345-350 . 百度学术
    4. 代银红. 元坝西部地区深层致密砂岩水平井高效压裂技术. 中国石油和化工标准与质量. 2024(11): 131-134+137 . 百度学术
    5. 王科,卢双舫,娄毅,李楠,李海涛,叶铠睿,张砚,李松雷. 压裂液渗吸与富气页岩气井典型生产规律关系剖析. 特种油气藏. 2024(03): 158-166 . 百度学术
    6. 何乐,朱炬辉,梁兴,赵智勇,管彬,安树杰. 基于管外光纤监测的页岩气水平井多簇压裂效果评价. 石油钻探技术. 2024(04): 110-117 . 本站查看
    7. 李德旗,陈钊,邹清腾,龚舒婷,刘臣,王天一,赖建林,葛婧楠,江铭,潘丹丹,刘兆然,曹博文. 四川盆地渝西大安区块龙潭组深层煤岩气压裂技术探索. 天然气工业. 2024(10): 150-158 . 百度学术
    8. 任勇,向凌云,赵智勇,齐天俊,钱斌,王德贵,张宏桥. 140 MPa电驱自动计数远程投球器的研制. 机械工程师. 2024(12): 113-115 . 百度学术
    9. 陈挺,徐昊垠,张源,张磊,于相东,李国良. 深层页岩储层转向压裂用暂堵材料研究及应用. 石油化工应用. 2024(11): 18-23 . 百度学术
    10. 杨亚东,邹龙庆,王一萱,朱静怡,李小刚,熊俊雅. 川南深层页岩气藏压裂裂缝导流能力影响因素分析. 特种油气藏. 2024(05): 162-167 . 百度学术
    11. 徐颖洁,陈玉林,何封,秦佳正,汤勇,段胜才,何佑伟. 基于嵌入式离散裂缝模型的页岩气开发参数优化. 天然气工业. 2024(12): 105-115 . 百度学术
    12. 刘顺,刘建斌,陈鑫,周志祥,黄凯,杜恒毅,张亚龙,王宗振. 耐温自降解暂憋剂性能影响因素实验. 特种油气藏. 2024(06): 145-150 . 百度学术
    13. 邹龙庆,何怀银,杨亚东,龚新伟,肖剑锋,苌北. 页岩气水平井暂堵球运移特性数值模拟研究. 石油钻探技术. 2023(05): 156-166 . 本站查看
    14. 侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势. 石油钻探技术. 2023(05): 66-77 . 本站查看
    15. 舒红林,刘臣,李志强,段贵府,赖建林,江铭. 昭通浅层页岩气压裂复杂裂缝扩展数值模拟研究. 石油钻探技术. 2023(06): 77-84 . 本站查看
    16. 刘继龙,谢然红,卫弘媛,徐陈昱,金国文,郑迪,王绍祥. 基于核磁共振T_2分布的页岩油流体组分含量计算方法. 测井技术. 2023(05): 533-541 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  2843
  • HTML全文浏览量:  46
  • PDF下载量:  3116
  • 被引次数: 16
出版历程
  • 收稿日期:  2018-11-08
  • 修回日期:  2018-11-09
  • 刊出日期:  2011-04-23

目录

/

返回文章
返回