CO2吞吐提高凝析气藏凝析油采收率实验研究

王小雨, 任皓洁, 广怡初, 张娟, 殷晓霞, 马斌

王小雨,任皓洁,广怡初,等. CO2吞吐提高凝析气藏凝析油采收率实验研究[J]. 石油钻探技术,2025,53(1):86−93. DOI: 10.11911/syztjs.2025011
引用本文: 王小雨,任皓洁,广怡初,等. CO2吞吐提高凝析气藏凝析油采收率实验研究[J]. 石油钻探技术,2025,53(1):86−93. DOI: 10.11911/syztjs.2025011
WANG Xiaoyu, REN Haojie, GUANG Yichu, et al. Experimental study on improving condensate oil recovery by CO2 huff and puff in condensate gas reservoirs [J]. Petroleum Drilling Techniques, 2025, 53(1):86−93. DOI: 10.11911/syztjs.2025011
Citation: WANG Xiaoyu, REN Haojie, GUANG Yichu, et al. Experimental study on improving condensate oil recovery by CO2 huff and puff in condensate gas reservoirs [J]. Petroleum Drilling Techniques, 2025, 53(1):86−93. DOI: 10.11911/syztjs.2025011

CO2吞吐提高凝析气藏凝析油采收率实验研究

基金项目: 国家重点研发计划项目“CO2驱油技术及地质封存安全监测”(编号:2018YFB0605500)资助。
详细信息
    作者简介:

    王小雨(1987—),女,辽宁义县人,2010年毕业于中国地质大学(武汉)地理信息系统专业,工程师,主要从事提高采收率技术及三次采油方面的研究及管理工作。E-mail:wangxyymyt@163.com

  • 中图分类号: TE357.45

Experimental Study on Improving Condensate Oil Recovery by CO2 Huff and Puff in Condensate Gas Reservoirs

  • 摘要:

    注CO2提高天然气和凝析油采收率技术目前仍处于发展阶段,CO2的注入方式、注入时机以及CO2与储层流体之间的相互作用机理尚不明确。通过开展凝析气藏注CO2定容衰竭实验和油气界面张力测定实验,在明确最大反凝析压力及液量和CO2−凝析油相互作用方式的基础上,提出了逐轮增量注CO2的吞吐方法,并采用全直径岩心实验评价了吞吐效果及CO2储存比例。研究表明,凝析气藏注入CO2后,其露点压力、最大反凝析压力和凝析油体积均不断降低,临界点向左下角移动,两相包络区向内收缩,流体组分变轻;CO2与凝析油之间需经多次接触,才能逐步混相,CO2压力越高,达到混相所需接触的次数越少;4轮增量CO2吞吐凝析油的采收率分别为1.2%,14.4%,25.8%和3.6%,比自然衰竭凝析油采收率累计提高了45.0百分点;CO2储存比例随吞吐次数增多而降低,分别为82.2%,72.1%,46.4%和9.2%,最优CO2吞吐次数应不超过3次;CO2吞吐效果受CO2注入压力及岩心系统压力的影响,当CO2注入压力低于最小混相压力时,不利于CO2吞吐和储存。研究结果可为凝析气藏高效开发、改善反凝析伤害提供参考和借鉴。

    Abstract:

    The application of CO2 injection to improve the recovery of natural gas and condensate oil is still in the development stage. The CO2 injection mode, injection time, and the interaction mechanism between CO2 and reservoir fluid are not clear. Through the constant volume depletion experiment of CO2 injection into condensate gas reservoirs and the measurement experiment of oil-gas interfacial tension, a stepwise incremental CO2 huff and puff method was proposed on the basis of determining the maximum retrograde condensate pressure, liquid volume, and CO2-condensate oil interaction mode. In addition, the huff and puff effect and CO2 storage ratio were evaluated by full diameter core experiment. The results show that after the CO2 is injected into the condensate gas reservoir, the dew point pressure, the maximum retrograde condensate pressure, and the condensate oil volume are continuously reduced, and the critical point moves to the lower left corner. The two-phase envelope area shrinks inward, and the fluid components become lighter. The phase mixing between CO2 and condensate oil can be achieved gradually only after multiple contacts. A higher CO2 pressure indicates fewer contacts required to achieve the phase mixing. The condensate oil recovery after four rounds of incremental CO2 huff and puff is 1.2%, 14.4%, 25.8%, and 3.6%, respectively, which is 45.0 percentage points higher than that after natural depletion. The proportion of CO2 storage decreases with the increase in huff and puff times, which are 82.2%, 72.1%, 46.4%, and 9.2%, respectively. CO2 huff and puff times should be controlled within 3 to achieve the optimal effect. The CO2 huff and puff effect is mainly affected by CO2 injection pressure and core system pressure. When the CO2 injection pressure is lower than the minimum miscible pressure (MMP), it is not conducive to CO2 huff and puff and storage. The research results provide a reference for the efficient development of condensate gas reservoirs and the improvement of retrograde condensate damage.

  • 图  1   界面张力测定及CO2吞吐岩心实验装置

    Figure  1.   Flow chart of interfacial tension measurement and CO2 huff and puff core experiment

    图  2   凝析气注CO2后凝析油体积分数随压力的变化及PT相图的变化

    Figure  2.   Variation of volume percentage of liquid phase with pressure and PT phase diagram after CO2 injection into condensate gas

    图  3   第一轮和第四轮注CO2后凝析油与CO2的作用过程

    Figure  3.   Interaction process between condensate oil and CO2 after the first and fourth rounds of CO2 injection

    图  4   不同温度下凝析油与CO2的界面张力随压力的变化

    Figure  4.   Variation of interfacial tension between condensate oil and CO2 with pressure at different temperatures

    图  5   压力13 MPa下液滴形状随时间的变化

    Figure  5.   Variation of droplet shape with time under pressure of 13 MPa

    图  6   正己烷和正十四烷及其二元混合物与CO2界面张力随压力的变化

    Figure  6.   Variation of interfacial tension of n-hexane, n-tetradecane and their binary mixtures with CO2 pressure

    图  7   CO2吞吐过程中凝析油采收率及岩心压力随时间的变化

    Figure  7.   Variation of condensate oil recovery and core pressure with time during CO2 huff and puff

    图  8   自然衰竭和吞吐前后岩心中凝析油饱和度的变化

    Figure  8.   Variation of condensate oil saturation in cores before and after natural depletion and huff and puff

    图  9   CO2注入体积、产出体积及CO2储存比例与吞吐次数的关系

    Figure  9.   Relationship between CO2 injection volume, output volume, CO2 storage ratio, and huff and puff times

  • [1] 李跃林,赵晓波,王雯娟,等. 近井带干化盐析和反凝析对高温气藏后期单井产能的影响:以中国南海崖城13-1高温凝析气藏为例[J]. 天然气地球科学,2018,29(1):140–150.

    LI Yuelin, ZHAO Xiaobo, WANG Wenjuan, et al. Influence of water vaporization and condensate bank near wellbore on well deliverability damage of high temperature gas reservoir at low pressure stage: a case study of Yacheng 13-1 high temperature gas-condensate reservoir[J]. Natural Gas Geoscience, 2018, 29(1): 140–150.

    [2] 李鹏飞,王爱方,张成林,等. 注CO2改善页岩凝析气藏反凝析伤害效果评价[J]. 大庆石油地质与开发,2023,42(6):151–158.

    LI Pengfei, WANG Aifang, ZHANG Chenglin, et al. Effect evaluation of CO2 injection on mitigat retrograde condensate damage of condensate gas in shale gas reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(6): 151–158.

    [3] 江同文,孙龙德,谢伟,等. 凝析气藏循环注气三元开发机理与提高凝析油采收率新技术[J]. 石油学报,2021,42(12):1654–1664. doi: 10.7623/syxb202112010

    JIANG Tongwen, SUN Longde, XIE Wei, et al. Three-element development mechanism of cyclic gas injection in condensate gas reservoirs and a new technique of enhancing condensate oil recovery[J]. Acta Petrolei Sinica, 2021, 42(12): 1654–1664. doi: 10.7623/syxb202112010

    [4] 汤勇,杜志敏,孙雷,等. 解除低渗凝析气井近井污染研究现状及进展[J]. 天然气工业,2007,27(6):88–91. doi: 10.3321/j.issn:1000-0976.2007.06.026

    TANG Yong, DU Zhimin, SUN Lei, et al. Current status and future development of the study on removal of near-wellbore damage in low-permeability gas condensate wells[J]. Natural Gas Industry, 2007, 27(6): 88–91. doi: 10.3321/j.issn:1000-0976.2007.06.026

    [5]

    MOHAMMED N, ABBAS A J, ENYI G C, et al. Alternating N2 gas injection as a potential technique for enhanced gas recovery and CO2 storage in consolidated rocks: An experimental study[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(8): 3883–3903. doi: 10.1007/s13202-020-00935-z

    [6] 李邦国,侯家鵾,雷兆丰,等. 超临界CO2萃取页岩油效果评价及影响因素分析[J]. 石油钻探技术,2024,52(4):94–103.

    LI Bangguo, HOU Jiakun, LEI Zhaofeng, et al. Evaluation of shale oil extraction by supercritical CO2 and analysis of influencing factors[J]. Petroleum Drilling Techniques, 2024, 52(4): 94–103.

    [7]

    SETEYEOBOT I, JAMIOLAHMADY M, JAEGER P, et al. An experimental study of the effects of CO2 injection on gas/condensate recovery and CO2 storage in gas-condensate reservoirs[R]. SPE 206117, 2021.

    [8]

    JESSEN K, ORR F M. Gas cycling and the development of miscibility in condensate reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2004, 7(5): 334–341.

    [9]

    GACHUZ-MURO H, GONZALEZ-VALTIERRA B, LUNA-ROJERO E, et al. Laboratory tests with CO2, N2 and lean natural gas in a naturally fractured gas-condesate reservoir under HP/HT conditions[R]. SPE 142855, 2011.

    [10]

    MOHEBBINIA S, SEPEHRNOORI K, JOHNS R T. Four-phase equilibrium calculations of carbon dioxide/hydrocarbon/water systems with a reduced method[J]. SPE Journal, 2013, 18(5): 943–951. doi: 10.2118/154218-PA

    [11] 冯文彦. 超临界凝析气藏开发后期注CO2提高采收率:以北部湾盆地福山凹陷莲4断块为例[J]. 天然气工业,2016,36(7):57–62. doi: 10.3787/j.issn.1000-0976.2016.07.008

    FENG Wenyan. Recovery enhancement at the later stage of supercritical condensate gas reservoir development via CO2 injection: a case study on Lian 4 fault block in the Fushan sag, Beibuwan Basin[J]. Natural Gas Industry, 2016, 36(7): 57–62. doi: 10.3787/j.issn.1000-0976.2016.07.008

    [12]

    ABBASOV Z Y, FATALIYEV V M, HAMIDOV N N. The solubility of gas components and its importance in gas-condensate reservoir development[J]. Petroleum Science and Technology, 2017, 35(3): 249–256. doi: 10.1080/10916466.2016.1251459

    [13]

    HOU Dali, JIA Ying, SHI Yunqing, et al. Experimental study on the effect of CO2 on phase behavior characteristics of condensate gas reservoir[J]. Journal of Chemistry, 2020, 2020: 6041081.

    [14] SY/T 5154—2014 油气藏流体取样方法[S].

    SY/T 5154—2014 Sampling procedures for hydrocarbon reservoir fluids[S].

    [15] GB/T 26981—2020 油气藏流体物性分析方法[S].

    GB/T 26981—2020 Analysis method for reservoir fluid physical properties[S].

    [16]

    WANG Jinsheng, RYAN D, SZABRIES M, et al. A study for using CO2 to enhance natural gas recovery from tight reservoirs[J]. Energy & Fuels, 2019, 33(5): 3821–3827.

    [17] 胡伟,吕成远,伦增珉,等. 致密多孔介质中凝析气定容衰竭实验及相态特征[J]. 石油学报,2019,40(11):1388–1395. doi: 10.7623/syxb201911009

    HU Wei, LYU Chengyuan, LUN Zengmin, et al. Constant volume depletion experiment and phase characteristics of condensate gas in dense porous media[J]. Acta Petrolei Sinica, 2019, 40(11): 1388–1395. doi: 10.7623/syxb201911009

    [18] 李凤霞,王海波,周彤,等. 页岩油储层裂缝对CO2吞吐效果的影响及孔隙动用特征[J]. 石油钻探技术,2022,50(2):38–44. doi: 10.11911/syztjs.2022006

    LI Fengxia, WANG Haibo, ZHOU Tong, et al. The influence of fractures in shale oil reservoirs on CO2 huff and puff and its pore production characteristics[J]. Petroleum Drilling Techniques, 2022, 50(2): 38–44. doi: 10.11911/syztjs.2022006

    [19] 陈雷,罗辑,饶华文,等. 凝析气藏开发中后期注气提高采收率[J]. 新疆石油地质,2019,40(1):98–102.

    CHEN Lei, LUO Ji, RAO Huawen, et al. et al gas injection EOR at mid-late development stage in condensate gas reservoirs[J]. Xinjiang Petroleum Geology, 2019, 40(1): 98–102.

    [20]

    LI Ligong, LI Chao, KANG Tianhe. Adsorption/desorption behavior of CH4 on shale during the CO2 Huff-and-Puff process[J]. Energy & Fuels, 2019, 33(6): 5147–5152.

    [21]

    LIU Jun, YAO Yanbin, LIU Dameng, et al. Experimental evaluation of CO2 enhanced recovery of adsorbed-gas from shale[J]. International Journal of Coal Geology, 2017, 179: 211–218. doi: 10.1016/j.coal.2017.06.006

  • 期刊类型引用(13)

    1. 高健,汪海阁,宋世贵,宋先知,杨培福,张彦龙. 中国石油工程作业智能支持中心模式改革与初探. 钻采工艺. 2025(01): 37-45 . 百度学术
    2. 史配铭,贺会锋,朱明明,孟凡金,屈艳平,王玉鹏. 苏里格南部气田Φ152.4 mm小井眼大斜度井快速钻井关键技术. 石油工业技术监督. 2024(09): 51-56 . 百度学术
    3. 叶成,高世峰,鲁铁梅,屈沅治,戎克生,王常亮,任晗. 玛18井区水平井井壁失稳机理及强封堵钻井液技术研究. 石油钻采工艺. 2023(01): 38-46 . 百度学术
    4. 刘召友,孙永强,郭百利. 苏里格气田?165.1mm小井眼二开一趟钻优快钻井关键技术. 西部探矿工程. 2023(12): 26-30 . 百度学术
    5. 王平,沈海超. 加拿大M致密砂岩气藏高效开发技术. 石油钻探技术. 2022(01): 97-102 . 本站查看
    6. 王国娜,张海军,孙景涛,张巍,曲大孜,郝晨. 大港油田大型井丛场高效钻井技术优化与应用. 石油钻探技术. 2022(02): 51-57 . 本站查看
    7. 范家伟,袁野,李绍华,王彦秋,黄兰,尚钲凯,李君,陶正武. 塔里木盆地深层致密油藏地质工程一体化模拟技术. 断块油气田. 2022(02): 194-198 . 百度学术
    8. 魏绍蕾,苏映宏,黄学斌,肖玉茹. 玛湖油田开发经验对特低渗-致密油藏开发的借鉴意义. 当代石油石化. 2021(02): 33-38 . 百度学术
    9. 王忠良,周扬,文晓峰,龙斌,丁凡,陈邵维. 长庆油田小井眼超长水平段水平井钻井技术. 石油钻探技术. 2021(05): 14-18 . 本站查看
    10. 郝亚龙,葛云华,崔猛,纪国栋,殷鸽,黄家根. 钻头选型中的地层分层技术. 断块油气田. 2020(02): 248-252 . 百度学术
    11. 史配铭,薛让平,王学枫,王万庆,石崇东,杨勇. 苏里格气田致密气藏水平井优快钻井技术. 石油钻探技术. 2020(05): 27-33 . 本站查看
    12. 张雄,余进,毛俊,刘祖磊. 准噶尔盆地玛东油田水平井高性能油基钻井液技术. 石油钻探技术. 2020(06): 21-27 . 本站查看
    13. 张瑞平,万教育,李彬,付仕,马静,刘冬. 直井段偏移对后期定向钻井作业的影响分析. 探矿工程(岩土钻掘工程). 2019(07): 28-33 . 百度学术

    其他类型引用(3)

图(9)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  25
  • PDF下载量:  20
  • 被引次数: 16
出版历程
  • 收稿日期:  2023-06-23
  • 修回日期:  2025-01-06
  • 网络出版日期:  2025-01-20
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回