Simulation Study on Mechanical Behavior of a Nonmetallic Composite Coiled Tubing with Cable Laying under Tension Load
-
摘要:
非金属敷缆复合连续油管在起下及采油过程中因自重而承受拉伸载荷,明确敷缆管在该载荷下的力学行为,可以为敷缆管的安全服役提供指导。采用有限元软件,构建了非金属敷缆复合连续油管的三维数值模型,分析了敷缆管在拉伸载荷下的力学行为及其各结构层的力学响应,探究了敷缆工艺参数(缆线缠绕及分布角度)对敷缆管力学特性的影响。研究表明:在拉伸载荷下,敷缆管所有结构层的应力均因缆线缠绕呈螺旋式分布;敷缆管拉伸至失效时,会经历弹性变形、过渡和屈服变形3个阶段,此时管内缆线处于小塑性均匀变形状态;减小缆线缠绕角度,可以提高敷缆管的弹性模量及其轴向承载能力,但会使敷缆管提前进入过渡阶段,进而发生屈服;缆线分布角度对敷缆管力学特性的影响不大。因此,在生产制造该类敷缆管时应着重考虑管内缆线的缠绕角度,该参数与敷缆管在拉伸载荷下力学性能的相关性较大
Abstract:Nonmetallic composite coiled tubing with cable laying is subjected to tension load due to its self-weight in the process of frequent lifting and lowering of wells for oil extraction, and clarifying the mechanical behavior of the pipe under this load can provide guidance for the safe service of the pipe. A three-dimensional numerical model of nonmetallic composite coiled tubing with cable laying was constructed by finite element software, and the mechanical behavior of the pipe under tension load and the mechanical response of each structural layer were analyzed. The influence of cable laying process parameters, such as cable winding and distribution angles, on the mechanical properties of the pipe was explored. The results indicate that under tension load, the stresses in all structural layers of the pipe with cable laying exhibit a spiral distribution because of cable winding. When the pipe is stretched to failure, it undergoes three stages: elastic deformation, transition stage, and yield deformation. Meanwhile, the cables are in a state of small plastic uniform deformation. Reducing the cable winding angle can enhance the elastic modulus and axial load-bearing capacity of the pipe with cable laying. However, it may cause the pipe to enter into the transition stage prematurely and then yield in advance. The cable distribution angle has a minimal impact on the mechanical properties of the pipe. Therefore, when this type of pipe is manufactured, special emphasis should be placed on the cable winding angle, as this parameter is highly correlated with the mechanical properties of the pipe under tension loads.
-
-
表 1 HDPE及缆线材料的参数
Table 1 Parameters of HDPE and cable materials
材料 弹性模量/MPa 泊松比 屈服强度/MPa 抗拉强度/MPa HDPE 850 0.45 25.9 纯铜 108000 0.32 220.0 263.04 表 2 不同纤维的力学性能参数
Table 2 Mechanical performance parameters of different fibers
纤维 断裂强度/
MPa弹性模量/
GPa延伸率,
%密度/
(t·m−3)泊松比 连续无碱玻璃
纤维1 404 72 2.6 2.60 0.22 Kevlar®29纤维 2 900 60 3.6 1.44 0.19 -
[1] 刘耀民,孙文盛,鲜林云. 敷缆连续管在油田电潜泵采油技术中的应用[J]. 焊管,2022,45(3):61–64. LIU Yaomin, SUN Wensheng, XIAN Linyun. Application of coiled tubing with cables in oilfield electric submersible pump oil production technology[J]. Welded Pipe and Tube, 2022, 45(3): 61–64.
[2] 李昂,杨万有,郑春峰,等. 海上油田采油技术创新实践及发展方向[J]. 石油钻探技术,2024,52(6):75–85. LI Ang, YANG Wanyou, ZHENG Chunfeng, et al. Innovation practice and prospect of oil production technologies in offshore oil-fields[J]. Petroleum Drilling Techniques, 2024, 52(6): 75–85.
[3] 李厚补,张学敏,马相阳,等. 井下用非金属复合材料连续管研究进展[J]. 石油管材与仪器,2021,7(2):9–14. LI Houbu, ZHANG Xuemin, MA Xiangyang, et al. Research progress on non-metallic coiled composite pipes[J]. Petroleum Tubular Goods & Instruments, 2021, 7(2): 9–14.
[4] CHEN Wei, XIONG Haichao, BAI Yong. Failure behavior analysis of steel strip–reinforced flexible pipe under combined tension and internal pressure[J]. Journal of Thermoplastic Composite Materials, 2020, 33(6): 727–753. doi: 10.1177/0892705718811405
[5] 祖世强,熊巍,张宝辉,等. 敷缆连续油管无杆采油试验及分析[J]. 内蒙古石油化工,2019,45(9):10–12. ZU Shiqiang, XIONG Wei, ZHANG Baohui, et al. Test and analysis of rodless oil recovery of coiled tubing[J]. Inner Mongolia Petrochemical Industry, 2019, 45(9): 10–12.
[6] 侯伟,刘传友,浮昀,等. 复合连续敷缆管采油技术探索实践[C]//第十七届宁夏青年科学家论坛石油石化专题论坛论文集. 银川:宁夏回族自治区科学技术协会,2021:197-199. HOU Wei, LIU Chuanyou, FU Yun, et al. Exploration and practice of composite continuous cable pipe oil production technology[C]//Proceedings of the 17th Ningxia Young Scientists Forum Petroleum and Petrochemical Special Forum. Yinchuan: Ningxia Association for Science and Technology, 2021: 197-199.
[7] WANG Baodong, LIU Xiaoben, ZHANG Hong, et al. A combined experimental and numerical simulation approach for burst pressure analysis of fiber-reinforced thermoplastic pipes[J]. Ocean Engineering, 2021, 236: 109517. doi: 10.1016/j.oceaneng.2021.109517
[8] WANG Yangyang, LOU Min, TONG Bing, et al. Mechanical properties study of reinforced thermoplastic pipes under a tensile load[J]. China Ocean Engineering, 2020, 34(6): 806–816. doi: 10.1007/s13344-020-0073-x
[9] KAMP G P, BETTS M. Development of a power and data transmission thermoplastic composite coiled tubing for electric drilling[R]. SPE 60730, 2000.
[10] 李帅,袁文才,张友军,等. 智能非金属敷缆连续管的夹持力学性能研究[J]. 化学工程与装备,2022(12):28–30. LI Shuai, YUAN Wencai, ZHANG Youjun, et al. Study on the clamping mechanical properties of non-metallic intelligent coiled tubing[J]. Chemical Engineering & Equipment, 2022(12): 28–30.
[11] 宿振国. 敷缆复合材料连续管结构设计与性能评测研究[D]. 青岛:中国石油大学(华东),2014. SU Zhenguo. Study on structural design and performance evaluation of composite coiled tubing with cables[D]. Qingdao: China University of Petroleum(East China), 2014.
[12] 丁楠,李厚补,古兴瑾,等. 非金属智能连续管拉伸层力学特性研究[J]. 石油机械,2020,48(11):119–125. DING Nan, LI Houbu, GU Xingjin, et al. Study on the mechanical properties of the tensile layer of non-metallic intelligent coiled tubing[J]. China Petroleum Machinery, 2020, 48(11): 119–125.
[13] 夏和萍. 热塑性复合材料海洋柔性管内压承载力研究[D]. 青岛:中国石油大学(华东),2021. XIA Heping. On internal pressure capacity of thermoplastic composite pipes[D]. Qingdao: China University of Petroleum(East China), 2021.
[14] KNAPP R H. Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion[J]. International Journal for Numerical Methods in Engineering, 1979, 14(4): 515–529. doi: 10.1002/nme.1620140405
[15] 白勇,张尹,杨红刚. 纤维绳缠绕增强复合管拉伸有限元分析[J]. 低温建筑技术,2015,37(1):61–63. BAI Yong, ZHANG Yin, YANG Honggang. Finite element analysis of fiber rope winding reinforced composite pipe tensile[J]. Low Temperature Architecture Technology, 2015, 37(1): 61–63.
[16] 张学敏,周腾,李厚补,等. 涤纶纤维增强聚乙烯复合管承压性能模拟[J]. 工程塑料应用,2020,48(8):118–122. ZHANG Xuemin, ZHOU Teng, LI Houbu, et al. Simulation of pressure-bearing performance of polyester fiber reinforced polyethylene composite pipes[J]. Engineering Plastics Application, 2020, 48(8): 118–122.
[17] YUE Qianjin, LU Qingzhen, YAN Jun, et al. Tension behavior prediction of flexible pipelines in shallow water[J]. Ocean Engineering, 2013, 58: 201–207. doi: 10.1016/j.oceaneng.2012.11.002
[18] 周腾. 纤维增强塑料复合管关键承载性能仿真模拟[D]. 西安:长安大学,2021. ZHOU Teng. Simulation of the key bearing performance of fiber reinforced plastic composite pipes[D]. Xi’an: Chang’an University, 2021.
[19] 张尹. 纤维缠绕增强复合管在轴对称荷载下的力学行为研究[D]. 杭州:浙江大学,2015. ZHANG Yin. Investigation on mechanisms of filament-wound fiber-reinforced composite pipe under axisymmetric loads[D]. Hangzhou: Zhejiang University, 2015.
[20] 张杰,梁博丰. 复杂载荷下钢带缠绕增强复合管力学特性[J]. 复合材料学报,2021,38(1):246–254. ZHANG Jie, LIANG Bofeng. Mechanical properties of reinforced composite pipe wound with steel strip under complex loads[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 246–254.
[21] 邹宵. 海洋复合软管结构设计的关键力学问题研究[D]. 大连:大连理工大学,2021. ZOU Xiao. Research on key mechanical problems of marine composite hose structure design[D]. Dalian: Dalian University of Technology, 2021.
[22] 黄婷. 钢丝缠绕增强塑料复合管的力学性能分析与研究[D]. 杭州:浙江大学,2014. HUANG Ting. Study on mechanisms of plastic pipe reinforced by helically cross-winding steel wire[D]. Hangzhou: Zhejiang University, 2014.
[23] 刘婷. 钢带缠绕复合管力学性能及可靠性分析[D]. 杭州:浙江大学,2018. LIU Ting. Mechanical behaviors and reliability analysis of steel strip reinforced flexible pipes[D]. Hangzhou: Zhejiang University, 2018.
[24] XU Yuxin, BAI Yong, FANG Pan, et al. Structural analysis of fibreglass reinforced bonded flexible pipe subjected to tension[J]. Ships and Offshore Structures, 2019, 14(7): 777–787. doi: 10.1080/17445302.2018.1564534
[25] 冯德华,綦耀光,余焱群. 海洋纤维增强复合柔性管拉伸性能[J]. 中国石油大学学报(自然科学版),2021,45(4):146–152. doi: 10.3969/j.issn.1673-5005.2021.04.018 FENG Dehua, QI Yaoguang, YU Yanqun. Tensile properties of marine fiber reinforced composite flexible pipes[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(4): 146–152. doi: 10.3969/j.issn.1673-5005.2021.04.018
[26] 陈伟. 涉内压荷载下钢带缠绕增强复合管力学性能分析[D]. 杭州:浙江大学,2018. CHEN Wei. Research on the mechanical properties of steel strip reinforced flexible pipe under internal pressure related load[D]. Hangzhou: Zhejiang University, 2018.
-
期刊类型引用(13)
1. 高健,汪海阁,宋世贵,宋先知,杨培福,张彦龙. 中国石油工程作业智能支持中心模式改革与初探. 钻采工艺. 2025(01): 37-45 . 百度学术
2. 史配铭,贺会锋,朱明明,孟凡金,屈艳平,王玉鹏. 苏里格南部气田Φ152.4 mm小井眼大斜度井快速钻井关键技术. 石油工业技术监督. 2024(09): 51-56 . 百度学术
3. 叶成,高世峰,鲁铁梅,屈沅治,戎克生,王常亮,任晗. 玛18井区水平井井壁失稳机理及强封堵钻井液技术研究. 石油钻采工艺. 2023(01): 38-46 . 百度学术
4. 刘召友,孙永强,郭百利. 苏里格气田?165.1mm小井眼二开一趟钻优快钻井关键技术. 西部探矿工程. 2023(12): 26-30 . 百度学术
5. 王平,沈海超. 加拿大M致密砂岩气藏高效开发技术. 石油钻探技术. 2022(01): 97-102 . 本站查看
6. 王国娜,张海军,孙景涛,张巍,曲大孜,郝晨. 大港油田大型井丛场高效钻井技术优化与应用. 石油钻探技术. 2022(02): 51-57 . 本站查看
7. 范家伟,袁野,李绍华,王彦秋,黄兰,尚钲凯,李君,陶正武. 塔里木盆地深层致密油藏地质工程一体化模拟技术. 断块油气田. 2022(02): 194-198 . 百度学术
8. 魏绍蕾,苏映宏,黄学斌,肖玉茹. 玛湖油田开发经验对特低渗-致密油藏开发的借鉴意义. 当代石油石化. 2021(02): 33-38 . 百度学术
9. 王忠良,周扬,文晓峰,龙斌,丁凡,陈邵维. 长庆油田小井眼超长水平段水平井钻井技术. 石油钻探技术. 2021(05): 14-18 . 本站查看
10. 郝亚龙,葛云华,崔猛,纪国栋,殷鸽,黄家根. 钻头选型中的地层分层技术. 断块油气田. 2020(02): 248-252 . 百度学术
11. 史配铭,薛让平,王学枫,王万庆,石崇东,杨勇. 苏里格气田致密气藏水平井优快钻井技术. 石油钻探技术. 2020(05): 27-33 . 本站查看
12. 张雄,余进,毛俊,刘祖磊. 准噶尔盆地玛东油田水平井高性能油基钻井液技术. 石油钻探技术. 2020(06): 21-27 . 本站查看
13. 张瑞平,万教育,李彬,付仕,马静,刘冬. 直井段偏移对后期定向钻井作业的影响分析. 探矿工程(岩土钻掘工程). 2019(07): 28-33 . 百度学术
其他类型引用(3)