Numerical Integral Calculation in Borehole Trajectory Model
-
摘要:
为了提高钻井设计软件中所使用定积分的计算速度,从井眼轨道模型的基本公式出发,经过积分参数变换,将恒工具面法北东坐标定积分中的被积函数需要7次三角函数和1次对数函数的运算减少为3次三角函数和1次对数函数的运算,将空间圆弧法水平投影长度定积分的被积函数中的三角函数运算简化掉,从而提高定积分的计算速度;使用变步长Simpson数值积分公式,计算恒工具面法北东坐标定积分和空间圆弧法水平投影长度定积分,可将计算精度控制到任意精度。算例计算表明,本文算法除了提高了计算速度,计算精度还与公开数据完全相同。本文给出的算法是对井眼轨道计算的进一步改进和完善,可应用于钻井软件开发中。
Abstract:In order to improve calculation speed of the definite integrals in the drilling design software, the basic formula of the borehole trajectory model and the integral parameter conversion were adopted. The calculation of seven trigonometric and one logarithmic functions was reduced to that of three trigonometric and one logarithmic functions required by the integrand of the definite integral in the north and east coordinates by the constant tool face method. The trigonometric functions in the integrand of the definite integral with a horizontal projection length by the space arc method were simplified, so as to improve the calculation speed of the definite integral. Using the variable step size Simpson numerical integration formula to calculate the above two kinds of definite integrals, the calculation accuracy can be controlled to arbitrary precision. The calculation shows that the new algorithm in this paper not only improves the calculation speed but also has the same calculation accuracy as the public data. The algorithm given in this paper is further improves and refines of the borehole trajectory calculation and can be applied in the software development of drilling.
-
-
表 1 主要数学函数的计算速度
Table 1 Calculation speed of major mathematical functions
测试序号 运算1亿次的用时/ms 余弦函数 正弦函数 对数函数 乘法 1 4 964 4 521 3 139 282 2 4 960 4 527 3 121 284 3 4 953 4 507 3 135 282 4 4 953 4 505 3 137 282 5 4 975 4 539 3 147 285 6 4 966 4 538 3 142 285 7 4 981 4 542 3 145 285 8 4 970 4 530 3 144 289 9 4 969 4 538 3 142 286 10 4 961 4 522 3 135 287 平均 4965 4527 3139 285 表 2 恒工具面模型井眼轨道参数
Table 2 Borehole trajectory parameters in constant tool face model
ΔL/m α/(°) ϕ/(°) ΔN/m ΔE/m ΔH/m ΔS/m 0 30.00 135.00 0.00 0.00 0.00 0.00 10 33.06 130.08 −3.53 3.86 8.52 5.23 20 36.13 125.55 −7.00 8.34 16.75 10.91 30 39.19 121.34 −10.37 13.44 24.67 17.02 40 42.26 117.40 −13.56 19.13 32.25 23.54 50 45.32 113.68 −16.54 25.37 39.46 30.46 60 48.39 110.15 −19.26 32.14 46.30 37.75 *60 48.3851 110.1535 −19.2585 32.1413 46.3024 37.7532 70 51.45 106.79 −21.68 39.40 52.74 45.40 80 54.51 103.57 −23.77 47.10 58.76 53.39 90 57.58 100.47 −25.49 55.21 64.35 61.68 100 60.64 97.47 −26.83 63.69 69.48 70.26 表 3 空间圆弧模型井眼轨道参数
Table 3 Borehole trajectory parameters in space arc model
ΔL/m α/(°) ϕ/(°) ΔN/m ΔE/m ΔH/m ΔS/m 0 40.00 60.00 0.00 0.00 0.00 0.00 10 42.41 56.51 3.47 5.60 7.52 6.59 20 44.92 53.32 7.44 11.24 14.76 13.49 30 47.51 50.41 11.90 16.92 21.68 20.71 40 50.17 47.74 16.83 22.60 28.26 28.23 50 52.88 45.27 22.22 28.28 34.48 36.06 60 55.64 42.96 28.05 33.92 40.32 44.18 *60 55.6400 42.9644 28.0498 33.9239 40.3234 44.1769 70 58.44 40.81 34.30 39.52 45.76 52.57 80 61.28 38.78 40.94 45.06 50.78 61.21 90 64.14 36.87 47.96 50.50 55.37 70.10 100 67.03 35.04 55.33 55.85 59.50 79.20 -
[1] 唐雪平,洪迪峰,盛利民,等. 恒工具面角井眼轨道设计模型及求解方法[J]. 石油学报,2018,39(10):1193–1198. doi: 10.7623/syxb201810011 TANG Xueping, HONG Difeng, SHENG Limin, et. al. Planning models and solving methods for wellpath with constant tool face angle[J]. Acta Petrolei Sinica, 2018, 39(10): 1193–1198. doi: 10.7623/syxb201810011
[2] 闫吉曾. 恒工具面角三维水平井轨道设计模型及求解算法[J]. 断块油气田,2018,25(1):117–121. YAN Jizeng. 3D horizontal well wellpath model based on constant tool face angle and its algorithm[J]. Fault-Block Oil & Gas Field, 2018, 25(1): 117–121.
[3] 刘修善. 井眼轨迹模式定量识别方法[J]. 石油勘探与开发,2018,45(1):145–148. doi: 10.1016/S1876-3804(18)30014-4 LIU Xiushan. Quantitative recognition method for borehole trajectory models[J]. Petroleum Exploration and Development, 2018, 45(1): 145–148. doi: 10.1016/S1876-3804(18)30014-4
[4] 刘修善. 导向钻具定向造斜方程及井眼轨迹控制机制[J]. 石油勘探与开发,2017,44(5):788–793. doi: 10.11698/PED.2017.05.14 LIU Xiushan. Directional deflection equations for steerable drilling tools and the control mechanism of wellbore trajectory[J]. Petroleum Exploration and Development, 2017, 44(5): 788–793. doi: 10.11698/PED.2017.05.14
[5] 闫吉曾. 非均质储层三维水平井轨道设计研究与应用[J]. 西南石油大学学报(自然科学版),2018,40(2):151–158. YAN Jizeng. 3D well-path design for horizontal wells in heterogeneous reservoirs[J]. Joural of Southwest Petroleum University (Science & Technology Edition), 2018, 40(2): 151–158.
[6] 陈天柱,陆洪智,吴翔,等. 一种新的阶梯水平井段轨道设计模型[J]. 探矿工程(岩土钻掘工程),2016,43(2):36–38. CHEN Tianzhu, LU Hongzhi, WU Xiang. A new model of trajectory design of stepped horizontal hole sections[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2016, 43(2): 36–38.
[7] 刘修善,彭国生,赵小祥. 旋转导向钻井轨道设计及监测方法[J]. 石油学报,2003,24(4):81–85. LIU Xiushan, PENG Guosheng, ZHAO Xiaoxiang. An advanced method for planning and surveying well trajectories of rotary steering drilling[J]. Acta Petrolei Sinica, 2003, 24(4): 81–85.
[8] 王国娜,张海军,孙景涛,等. 大港油田大型井丛场高效钻井技术优化与应用[J]. 石油钻探技术,2022,50(2):51–57. WANG Guona, ZHANG Haijun, SUN Jingtao, et al. Optimization and application of efficient drilling technologies for large-scale well cluster fiilds in Dagang Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 51–57.
[9] 田逢军,王运功,唐斌,等. 长庆油田陇东地区页岩油大偏移距三维水平井钻井技术[J]. 石油钻探技术,2021,49(4):34–38. TIAN Fengjun, WANG Yungong, TANG Bin, et al. Drilling technology for long-offset 3D horizontal shale oil wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 34–38.
[10] 赵波,陈二丁. 胜利油田页岩油水平井樊页平1井钻井技术[J]. 石油钻探技术,2021,49(4):53–58. ZHAO Bo, CHEN Erding. Drilling technology for horizontal shale oil well Fan Yeping 1 in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 53–58.
[11] 韩志勇. 定向钻井设计与计算[M]. 2版. 东营: 中国石油大学出版社, 2007. HAN Zhiyong. Directional drilling design and calculation[M]. 2nd ed. Dongying: China University of Petroleum Press, 2007.
[12] 曹传文,薄珉. 最小曲率法井眼轨迹控制技术研究与应用[J]. 石油钻采工艺,2012,34(3):1–6. CAO Chuanwen, BO Min. Well trajectory control technique by minimum curvature method[J]. Oil Drilling & Production Technology, 2012, 34(3): 1–6.
[13] 刘永旺,管志川,梁海明,等. 测段选择对轨迹拟合精度的影响及其处理方法[J]. 石油钻采工艺,2010,32(4):16–21. LIU Yongwang, GUAN Zhichuan, LIANG Haiming, et al. Segment selection effect on directional well trajectory fitting accuracy and accurate measurement method[J]. Oil Drilling & Production Technology, 2010, 32(4): 16–21.
[14] 刘茂森,付建红,白璟. 页岩气双二维水平井轨迹优化设计与应用[J]. 特种油气藏,2016,23(2):147–150. LIU Maosen, FU Jianhong, BAI Jing. Optimization of shale gas dual-2D horizontal-well trajectories and its application[J]. Special Oil & Gas Reservoirs, 2016, 23(2): 147–150.
[15] 李文霞,王居贺,王治国,等. 顺北油气田超深高温水平井井眼轨迹控制技术[J]. 石油钻探技术,2022,50(4):18–24. LI Wenxia, WANG Juhe, WANG Zhiguo, et al. Wellbore trajectory control technologies for ultra-deep and high-temperature horizontal wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 18–24.
[16] 刘修善. 井眼轨道几何学[M]. 北京: 石油工业出版社, 2006. LIU Xiushan. Geometry of wellbore trajectory[M]. Beijing: Petroleum Industry Press, 2006.
[17] 鲁港,王刚,邢玉德,等. 定向井钻井空间圆弧轨道计算的两个问题[J]. 石油地质与工程,2006,20(6):53–55. LU Gang, WANG Gang, XING Yude, et al. Two problems of spatial arc trajectory calculation for directional well drilling[J]. Petroleum Geology and Engineering, 2006, 20(6): 53–55.
[18] 陈铁铮,鲁港,尚维斌,等. 最小曲率法中水平投影长度的计算[J]. 石油地质与工程,2007,21(5):82–84. doi: 10.3969/j.issn.1673-8217.2006.06.018 CHEN Tiezheng, LU Gang, SHANG Weibin, et al. Calculation of horizontal projection length in minimum curvature method[J]. Petroleum Geology and Engineering, 2007, 21(5): 82–84. doi: 10.3969/j.issn.1673-8217.2006.06.018
[19] 白冬青. 最小曲率法计算中的几个问题[J]. 断块油气田,2007,14(5):67–69. BAI Dongqing. Some problems in the calculation of minimum curvature method[J]. Fault-Block Oil & Gas Field, 2007, 14(5): 67–69.
[20] 杨帆, 鲁港, 谭静. 最小曲率法计算中的数值方法[J]. 钻采工艺, 2008, 31(增刊1): 17-19. YANG Fan, LU Gang, TAN Jing. Numerical methods in the calculation of minimum curvature method [J]. Drilling & Production Technology, 2008, 31(supplement l): 17-19.
[21] 尹德战, 秦利民, 张书志. 三维定向井实钻井眼轨迹视投影长度的计算[J]. 石油钻探技术, 2007, 35(4): 38-40. YIN Dezhan, QIN Limin, ZHANG Shuzhi. Calculation of the apparent projection length of the actual 3D wellbore trajectory[j]. Petroleum Drilling Techniques, 2007, 35(4): 38-40.
[22] 鲁港, 佟长海, 夏泊洢, 等. 空间圆弧轨迹的矢量描述技术[J]. 石油学报, 2014, 35(4): 759-764. LU Gang, TONG Changhai, XIA Boyi, et al Vector description of spatial-arc wellbore trajectories [J]. Acta Petrolei Sinica, 2014, 35(4): 759-764.
[23] 鲁港. 定向井轨道设计参数谱集理论探索[J]. 石油钻探技术,2012,40(5):7–12. doi: 10.3969/j.issn.1001-0890.2012.05.002 LU Gang. The spectral theory for parameters design of directional well trajectory[J]. Petroleum Drilling Techniques, 2012, 40(5): 7–12. doi: 10.3969/j.issn.1001-0890.2012.05.002
[24] 张圣华. C语言数值算法[M]. 北京: 海洋出版社, 1993: 107–110. ZHANG Shenghua. C numerical algorithm[M]. Beijing: Marine Press, 1993: 107–110.
-
期刊类型引用(23)
1. 车继勇,丁鹏,王红月,马永刚. 组合钻具定向钻井造斜及提速技术方法. 设备管理与维修. 2024(08): 98-100 . 百度学术
2. 熊浪豪,巢世伟,柏尚宇,陈君,范乘浪,崔建峰. E Zhanbyrshy-3井钻井实践及技术难点分析. 内蒙古石油化工. 2023(05): 63-66+120 . 百度学术
3. 汪伟,柳贡慧,李军,查春青,连威,夏铭莉. 脉动式扭转冲击钻井工具工作特性分析与测试. 石油钻探技术. 2022(05): 63-69 . 本站查看
4. 宋周成,翟文宝,邓昌松,徐杨,徐席明,汪鑫,文涛. 富满油田超深井井身结构优化技术与应用. 钻采工艺. 2022(06): 36-41 . 百度学术
5. 王涛,刘锋报,罗威,晏智航,陆海瑛,郭斌. 塔里木油田防漏堵漏技术进展与发展建议. 石油钻探技术. 2021(01): 28-33 . 本站查看
6. 崔月明,史海民,张清. 吉林油田致密油水平井优快钻井完井技术. 石油钻探技术. 2021(02): 9-13 . 本站查看
7. 苏崭,王博,盖京明,李玮,赵欢,陈冰邓. 复合式扭力冲击器在坚硬地层中的应用. 中国煤炭地质. 2021(05): 47-50+57 . 百度学术
8. 张强,饶志华,秦世利,金勇. 南海东部深层古近系高效开发技术探索与实践. 石油化工应用. 2021(06): 34-38 . 百度学术
9. 李银婷,董小虎. 顺北油田钻井参数强化的提速效果评价. 钻探工程. 2021(07): 72-78 . 百度学术
10. 陈冬毅,徐鲲,张作伟,吕广,张鑫,郭小明. 恒压恒扭工具在渤海油田中的应用. 科学技术创新. 2021(22): 153-154 . 百度学术
11. 严德,张玉山,宋玲安,陈彬,李彬,刘保波. 深水高温高压井钻井技术探索与实践. 中国石油和化工标准与质量. 2021(13): 193-194 . 百度学术
12. 张喆,闫楚旋,冯震,脱直霖,石朝龙. 塔里木油田HLHT区块优快钻井技术研究. 云南化工. 2021(10): 127-129 . 百度学术
13. 李双贵,于洋,樊艳芳,曾德智. 顺北油气田超深井井身结构优化设计. 石油钻探技术. 2020(02): 6-11 . 本站查看
14. 袁国栋,王鸿远,陈宗琦,母亚军,席宝滨. 塔里木盆地满深1井超深井钻井关键技术. 石油钻探技术. 2020(04): 21-27 . 本站查看
15. 张智亮,王威,伊明,刘强. 井下安全监控系统设计与实现. 石油钻探技术. 2020(06): 65-70 . 本站查看
16. 周波,汪海阁,张富成,纪国栋,韩泽龙,武强. 温度压力对岩石可钻性和破岩效率影响实验. 石油钻采工艺. 2020(05): 547-552 . 百度学术
17. 李林涛,万小勇,黄传艳,潘丽娟,郭知龙,曹宗波,张伟博. 双向卡瓦可回收高温高压封隔器的研制与应用. 石油机械. 2019(03): 81-86 . 百度学术
18. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
19. 江波,任茂,王希勇. 彭州气田PZ115井钻井提速配套技术. 探矿工程(岩土钻掘工程). 2019(08): 73-78 . 百度学术
20. 郑振国,黎红胜,赵海艳,温慧芸,孙东方. 哥伦比亚Matambo区块深井钻井关键技术. 石油钻探技术. 2018(02): 30-37 . 本站查看
21. 丁红,宋朝晖,袁鑫伟,邢战,张宏阜,张仪. 哈拉哈塘超深定向井钻井技术. 石油钻探技术. 2018(04): 30-35 . 本站查看
22. 李世昌,闫立鹏,李建冰,白文路,杨秀丽,闫天宇. 自循环粒子射流钻井提速工具机理研究. 中国锰业. 2018(03): 98-102 . 百度学术
23. 陈养龙,席宝滨,晁文学,朱伟厚. 顺北区块Ⅰ号断裂带钻井分层提速技术. 断块油气田. 2018(05): 649-652 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 271
- HTML全文浏览量: 143
- PDF下载量: 70
- 被引次数: 30