Transmission Characteristics of Downhole Hydraulic Control Signalsin Intelligent Wells
-
摘要:
液压控制的智能井系统通过长达数千米的液压管线向井下传送液压控制信号和动力,选择目的层层位和控制流量。向井下传送液压控制信号时,受传输介质和细长液压管线的影响,液压控制信号的传输速度、强度和形态都会发生衰减和扭曲,难以被井下设备识别。为对井下执行器进行可靠的控制,讨论了液压控制信号的传输速度、井眼温度沿深度方向变化对传输介质黏度的影响;分析了井口压力向井下传播时压力与时间的变化关系、地面液压控制信号传到井下时的形态变化、同时施加液压控制信号和液压动力信号时的传输特性,以及有无阻力状态下开启井下滑套时控制压力的变化;再考虑管线内径、加压方式、井眼环境、液压油黏度等对上述传输特性的影响,得出液压控制压力应大于5 MPa、3 000 m深水井中井下液压信号传输时间约为25 min等定量评估结论。研究结论可为开展井下液压控制提供理论参考。
Abstract:Hydraulically controlled intelligent well systems transmit control signals and power to the underground through thousands of meters of hydraulic control pipelines, and realize horizon selection in target layers and flow rate control. Transmitted downhole hydraulic control signals are affected by transmission media and slender transmission pipeline. Thus, the transmission speed, strength, and shapes of these signals are subject to attenuation and distortion, which are difficult to identify by the downhole equipment. To achieve sound control over the downhole actuator, this study discussed the influence of the signal transmission speed and wellbore temperature variation along the depth on the viscosity of transmission media. The following aspects were explored: the variation of pressure over time when the wellhead pressure propagated downward; the change in the shapes of ground control signals when they were transmitted underground; the transmission characteristics when hydraulic control signals and hydraulic power signals were applied simultaneously; the change in control pressure to open downhole sliding sleeves with or without resistance. In addition, upon consideration of the influence of different inner pipeline diameters, pressure applied methods, wellbore environments, and viscosity of hydraulic oil on the above transmission characteristics, several quantitative evaluation conclusions were drawn. For example, the hydraulic control pressure should be greater than 5 MPa, and the downhole transmission time for hydraulic signals in a deep-offshore well with a depth of 3 000 m was about 25 min. The research conclusions could provide a theoretical reference for downhole hydraulic control.
-
-
-
[1] BOTTO G, GIULIANI C, MAGGIONI B, et al. Innovative remote controlled completion for Aquila deepwater challenge[R]. SPE 36948, 1996.
[2] SCHNITZLER E, FERREIRA GONÇALEZ L, SAVOLDI ROMAN R, et al. 100th intelligent completion installation: a milestone in Brazilian pre-salt development[R]. SPE 195935, 2019.
[3] Anon. Halliburton website[Z]. [2022-01-15]. http://www.halliburton.com/en-US/ps/well-dynamics/well-completions/intelligent-completions/default.page?node-id=hfqel9vs&nav=en-US_completions_public.
[4] POTIANI M, EDUARDO M. A review of IC installations: lessons learned from electric-hydraulic, hydraulic and all-electric sys-tems[R]. OTC 25391, 2014.
[5] JOUBRAN J. Intelligent completions: design and reliability of interval control valves in the past, present, and future[R]. OTC 28917, 2018.
[6] TYVONCHUK S P. Predicting of the geometrical behavior of formations in subsurface based on the analysis of LWD/MWD data while drilling horizontal wells[R]. SPE 208511, 2021.
[7] 刘修善,苏义脑. 钻井液脉冲信号的传输特性分析[J]. 石油钻采工艺,2000,22(4):8–10. doi: 10.3969/j.issn.1000-7393.2000.04.003 LIU Xiushan, SU Yinao. Investigation on the transmission behaviors of drilling fluid pulse signal[J]. Oil Drilling & Production Technology, 2000, 22(4): 8–10. doi: 10.3969/j.issn.1000-7393.2000.04.003
[8] TRIKI A, CHAKER M A. Compound technique-based inline design strategy for water-hammer control in steel pressurized-piping systems[J]. International Journal of Pressure Vessels and Piping, 2019, 169: 188–203. doi: 10.1016/j.ijpvp.2018.12.001
[9] ILAMAH O, WATERHOUSE R. Field-scale production optimization with intelligent wells[R]. SPE 190827, 2018.
[10] MCSTRAVICK D M, ROTHERS D, BLUM G. Laboratory testing of reflected pressure pulses in small-diameter tubing[R]. OTC 7045, 1992.
[11] CHAUDHRY M H. 实用水力瞬变过程[M]. 程永光, 杨建东, 赖旭, 等译. 3版. 北京: 中国水利水电出版社, 2015: 42−43. CHAUDHRY M H. Applied hydraulic transients[M]. CHENG Yongguang, YANG Jiandong, LAI Xu, et al, translated. 3rd ed. Beijing: China Water & Power Press, 2015: 42−43.
[12] 雷天觉. 新编液压工程手册[M]. 北京: 北京理工大学出版社, 1998: 48. LEI Tianjue. New hydraulic engineering manual[M]. Beijing: Beijing Institute of Technology Press, 1998: 48.
[13] 温诗铸, 黄平. 摩擦学原理[M]. 3版. 北京: 清华大学出版社, 2008: 8−10. WEN Shizhu, HUANG Ping. Principles of tribology[M]. 3rd ed. Beijing: Tsinghua University Press, 2008: 8−10.
[14] 怀利, 斯特里特. 瞬变流[M]. 清华大学流体传动与控制教研室, 译. 北京: 水利电力出版社, 1983: 25−29. WYLIE E B, STREETER V L. Fluid transients[M]. Teaching and Research Group of Fluid Transmission and Control, Tsinghua University, translated. Beijing: Water Resources and Electric Power Press, 1983: 25−29.
[15] 包日东. 管道瞬变流动分析[M]. 北京: 中国石化出版社, 2015: 39−45. BAO Ridong. Analysis of transient flow in pipeline[M]. Beijing: China Petrochemical Press, 2015: 39−45.
-
期刊类型引用(15)
1. 姚军,王春起,黄朝琴,杨永飞,孙海,张磊. 深层超深层油气藏高应力下数字岩心构建方法. 石油钻探技术. 2024(02): 38-47 . 本站查看
2. 狄勤丰,尤明铭,李田心,周星,杨赫源,王文昌. 特深井钻柱动力学特性模拟与分析. 石油钻探技术. 2024(02): 108-117 . 本站查看
3. 李军,杨宏伟,陈旺,龙震宇,张更. 超深井自动控制压井室内物理模拟试验及结果分析. 石油钻探技术. 2024(02): 31-37 . 本站查看
4. 王春生,冯少波,张志,周波,吕晓钢,周宝. 深地塔科1井钻井设计关键技术. 石油钻探技术. 2024(02): 78-86 . 本站查看
5. 曲豪,陈锋,陈家磊,张豪,明传中,李吉荣. 特深井井下等效冲击扭矩作用下钻铤接头三维力学特征分析. 石油钻探技术. 2024(02): 211-217 . 本站查看
6. 黎然,李文哲,张佳寅,刘阳. 万米深井SDCK1井上部超大尺寸井眼钻井液技术. 石油钻探技术. 2024(02): 93-99 . 本站查看
7. 傅超,杨进,刘华清,殷启帅,王磊,胡志强. 多维度深水浅层建井方式优选方法研究. 石油钻探技术. 2024(03): 40-46 . 本站查看
8. 王大勇,马红滨,李欣龙,熊超,史怀忠,黄中伟,赫文豪. 高压水射流辅助锥形PDC齿破碎花岗岩试验研究. 石油机械. 2024(07): 36-44 . 百度学术
9. 纪照生,袁国栋,晁文学,蒋金宝,白旺东. 塔里木盆地超深小井眼定向钻井提速提效关键技术. 石油钻探技术. 2024(04): 8-14 . 本站查看
10. 徐忠正,赵明伟,刘佳伟,戴彩丽. 超深层耐高温压裂液研究进展与展望. 化工进展. 2024(09): 4845-4858 . 百度学术
11. 崔海波. 深井底部钻具组合选型及防斜性能评价指标分析. 石油矿场机械. 2023(01): 9-14 . 百度学术
12. 李涛,苏强,杨哲,徐卫强,胡锡辉. 川西地区超深井钻井完井技术现状及攻关方向. 石油钻探技术. 2023(02): 7-15 . 本站查看
13. 马英文,杨进,李文龙,徐鲲,谢涛,杨保健. 渤中26-6油田发现井钻井设计与施工. 石油钻探技术. 2023(03): 9-15 . 本站查看
14. 路保平,陈会年. 《石油钻探技术》50年与未来发展建议. 石油钻探技术. 2023(04): 3-10 . 本站查看
15. 许华明,丛海月,侯平舒,王惠勇. 我国深层—超深层油气资源探矿权管理存在的问题及政策建议. 中国石油勘探. 2023(06): 70-77 . 百度学术
其他类型引用(1)