塔深5井超深层钻井关键技术

王建云, 韩涛, 赵宽心, 张立军, 席宝滨, 叶翔

王建云,韩涛,赵宽心,等. 塔深5井超深层钻井关键技术[J]. 石油钻探技术,2022, 50(5):27-33. DOI: 10.11911/syztjs.2022074
引用本文: 王建云,韩涛,赵宽心,等. 塔深5井超深层钻井关键技术[J]. 石油钻探技术,2022, 50(5):27-33. DOI: 10.11911/syztjs.2022074
WANG Jianyun, HAN Tao, ZHAO Kuanxin, et al. Key drilling technologies for the ultra-deep well Tashen 5 [J]. Petroleum Drilling Techniques,2022, 50(5):27-33. DOI: 10.11911/syztjs.2022074
Citation: WANG Jianyun, HAN Tao, ZHAO Kuanxin, et al. Key drilling technologies for the ultra-deep well Tashen 5 [J]. Petroleum Drilling Techniques,2022, 50(5):27-33. DOI: 10.11911/syztjs.2022074

塔深5井超深层钻井关键技术

详细信息
    作者简介:

    王建云(1974—),男,湖北浠水人,1997年毕业于西南石油学院石油工程专业,高级工程师,主要从事钻井完井工程技术研究与相关管理工作。E-mail:wjianyun.xbsj@sinopec.com

  • 中图分类号: TE245

Key Drilling Technologies for the Ultra-Deep Well Tashen 5

  • 摘要:

    为探明塔河油田寒武系沙依里克组、肖尔布拉克组及震旦系奇格布拉克组储层的发育特征及含油气情况,部署了预探井塔深5井,相关资料表明,该井超深层存在缝洞发育易井漏、地层倾角大易井斜、硅质白云岩压实程度高导致机械钻速慢等钻井技术难点。针对井漏问题,优选了抗温堵漏材料,优化了堵漏材料的配比和粒径,辅以随钻堵漏和渐进式堵漏方法,以逐步提高地层的承压能力;为解决井身质量控制和提速的矛盾,应用了垂直钻井工具+大扭矩螺杆的防斜钻井提速技术,能够兼顾防斜和提速;为解决白云岩地层可钻性差、研磨性强的问题,优选了减振耐磨的PDC钻头和扭力冲击器配合等壁厚大扭矩螺杆钻进。采用上述钻井关键技术后,塔深5井顺利施工并成功完钻,为后续塔河油田下部寒武系和震旦系钻井提供了技术途径、积累了技术经验。

    Abstract:

    Well Tashen 5 was deployed to explore the development characteristics and hydrocarbon contents of the Cambrian Shayilike Formation, Xiaoerbulake Formation and the Sinian Qigebrak Formation. Related data indicates that the ultra-deep Well Tashen 5 have several technical difficulties in drilling, such as lost circulation due to fractures and cavities, well deviation due to large formation inclination, and low rate of penetration (ROP) caused by the highly compacted siliceous dolomite. For the lost circulation problem, temperature resistant plugging materials were selected. The ratio and particle size of the plugging materials were optimized to gradually increase the pressure-bearing capacity of the formations while employing the plugging-while-drilling method and progressive plugging methods. In order to solve the conflict between the wellbore quality control and ROP enhancement, the vertical drilling tools and high-torque positive displacement motor (PDM) were applied for deviation prevention and ROP enhancement. In order to solve the problems of low drillability and high abrasiveness of the dolomite formation, the damping and wear-resistant PDC bit and torsion impactor were selected to match with high-torque PDM with iso-wall thickness for compound drilling. Well Tashen 5 was successfully completed after applying above key drilling technologies and provided technical methods and experiences for subsequent drilling in the Cambrian and Sinian of Tahe Oilfield.

  • 图  1   塔深5井设计井身结构

    Figure  1.   Designed casing program of Well Tashen 5

    图  2   史密斯钻头公司的减振PDC钻头

    Figure  2.   Smith damping PDC bit

    图  3   塔深5井实钻井身结构

    Figure  3.   Drilled casing program of Well Tashen 5

    表  1   塔深5井设计的钻遇地层及各层厚度

    Table  1   Formations encountered and corresponding thickness for the designed drilling of Well Tashen 5

    设计钻遇地层井深/m厚度/m
    新生界 第四系 85
    新近系 上新统 库车组 1 815 1 730
    中新统 康村组 2 879 1 064
    吉迪克组 3 449 570
    古近系 渐–古新统 苏维依组 3 484 35
    3 549 65
    中生界 白垩系 下统 巴什基奇克组 4 198 649
    巴西盖组 4 253 55
    舒善河组 4 541 288
    亚格列木组 4 576 35
    侏罗系 下统 4 636 60
    三叠系 上统 哈拉哈塘组 4 840 204
    中统 阿克库勒组 4 985 145
    下统 柯吐尔组 5 050 65
    古生界 石炭系 下统 卡拉沙依组 5 427 377
    巴楚组 5 465 38
    奥陶系 中–下统 鹰山组 6 455 990
    蓬莱坝组 6 765 310
    寒武系 上统 下丘里塔格组 7 725 960
    中统 阿瓦塔格组 8 015 290
    沙依里克组 8 105 90
    下统 吾松格尔组 8 275 170
    肖尔布拉克组 8 785 510
    玉尔吐斯组 8 845 60
    元古界 震旦系 上统 奇格布拉克组 8 890 45
    下载: 导出CSV

    表  2   塔深5井实钻地层及各层厚度

    Table  2   Formations encountered and corresponding thickness during the drilling of Well Tashen 5

    实际钻遇地层井深/m厚度/m
    新生界 第四系 85 85
    新近系 上新统 库车组 1 915 1 830
    中新统 康村组 2 834 919
    吉迪克组 3 386 552
    古近系 渐–古新统 苏维依组 3 478 92
    3 556 78
    中生界 白垩系 下统 巴什基奇克组 4 206 650
    巴西盖组 4 276 70
    舒善河组 4 552 276
    亚格列木组 4 582 30
    侏罗系 下统 4 644 62
    三叠系 上统 哈拉哈塘组 4 774 130
    中统 阿克库勒组 4 994 220
    下统 柯吐尔组 5 006 12
    古生界 石炭系 下统 卡拉沙依组 5 411 405
    巴楚组 5 446 35
    奥陶系 中–下统 鹰山组 6 330 884
    蓬莱坝组 6 707 377
    寒武系 上统 下丘里塔格组 7 615 908
    中统 阿瓦塔格组 7 995 380
    沙依里克组 8 029 34
    下统 吾松格尔组 8 230 201
    肖尔布拉克组 8 704 474
    玉尔吐斯组 8 784 80
    元古界 震旦系 上统 奇格布拉克组 8 943 159
    苏盖特布拉克组 9 017 74(未穿)
    下载: 导出CSV

    表  3   塔深5井与轮探1井在不同工艺下的机械钻速对比

    Table  3   Comparison of the ROP between Well Tashen 5 and Well Luntan 1 with different drilling technologies

    井号钻头型号钻头外径/mm钻头生产厂家钻进井段/m机械钻速/(m·h−1提速工艺
    塔深5XZ816311.1史密斯6 738.00~6 977.001.74扭冲
    Z716311.1史密斯6 977.00~7 144.002.00扭冲
    XZ816311.1史密斯7 257.00~7 520.002.36扭冲
    Z716311.1史密斯7 520.00~7 628.002.44扭冲
    轮探1KPM1333DST311.1江汉6 716.77~6 790.001.09
    KPM1333DST311.1江汉6 790.00~6 953.001.57双摆
    KPM1333DST311.1江汉6 953.00~7 102.001.49双摆
    X616311.1史密斯7 102.00~7 424.001.40双摆
    X616311.1史密斯7 424.00~7 475.671.64双摆
    下载: 导出CSV
  • [1] 张伟,海刚,张莹. 塔河油田碳酸盐岩缝洞型油藏气水复合驱技术[J]. 石油钻探技术,2020,48(1):61–65. doi: 10.11911/syztjs.2019124

    ZHANG Wei, HAI Gang, ZHANG Ying. Gas-Water composite flooding technology for fractured and vuggy carbonate reservoirs in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 61–65. doi: 10.11911/syztjs.2019124

    [2] 朱光有,曹颖辉,闫磊,等. 塔里木盆地8 000 m以深超深层海相油气勘探潜力与方向[J]. 天然气地球科学,2018,29(6):755–772. doi: 10.11764/j.issn.1672-1926.2018.05.019

    ZHU Guangyou, CAO Yinghui, YAN Lei, et al. Petroleum exploration potential and favorable areas of ultra-deep marine strata deeper than 8000 meters in Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(6): 755–772. doi: 10.11764/j.issn.1672-1926.2018.05.019

    [3] 刘永立,尤东华,李海英,等. 超深层碳酸盐岩层系硅质岩储层表征与评价:以塔里木盆地塔深6井为例[J]. 石油与天然气地质,2021,42(3):547–556. doi: 10.11743/ogg20210302

    LIU Yongli, YOU Donghua, LI Haiying, et al. Characterization and evaluation of chert reservoirs in ultra-deep carbonate rock formations: a case study on Well TS 6 in the Tarim Basin[J]. Oil & Gas Geology, 2021, 42(3): 547–556. doi: 10.11743/ogg20210302

    [4] 杨沛,刘洪涛,李宁,等. 塔里木油田超深井钻井设计及优化技术:以亚洲最深井轮探1井为例[J]. 中国石油勘探,2021,26(3):126–135. doi: 10.3969/j.issn.1672-7703.2021.03.012

    YANG Pei, LIU Hongtao, LI Ning, et al. Drilling design and optimization technology of ultra-deep wells in the Tarim Oilfield: a case study of Well Luntan 1, the deepest well in Asia[J]. China Petroleum Exploration, 2021, 26(3): 126–135. doi: 10.3969/j.issn.1672-7703.2021.03.012

    [5] 刘永立,尤东华,高利君,等. 塔河油田塔深6井蓬莱坝组硅质岩成因及其地质意义[J]. 石油与天然气地质,2020,41(1):83–91. doi: 10.11743/ogg20200108

    LIU Yongli, YOU Donghua, GAO Lijun, et al. Genesis and geological significance of siliceous rock in Penglaiba Formation in Well Tashen 6, Tahe Oilfield[J]. Oil & Gas Geology, 2020, 41(1): 83–91. doi: 10.11743/ogg20200108

    [6] 王涛,刘锋报,罗威,等. 塔里木油田防漏堵漏技术进展与发展建议[J]. 石油钻探技术,2021,49(1):28–33. doi: 10.11911/syztjs.2020080

    WANG Tao, LIU Fengbao, LUO Wei, et al. The technical advance and development suggestions for leakage prevention and plugging technologies in the Tarim Oilfield[J]. Petroleum Drilling Techni-ques, 2021, 49(1): 28–33. doi: 10.11911/syztjs.2020080

    [7] 张端瑞,文涛,蒲磊,等. “垂直钻井工具+等壁厚螺杆”提速钻具组合先导性试验:以库车山前高陡构造克深A井为例[J]. 石油钻采工艺,2020,42(6):684–690.

    ZHANG Duanrui, WEN Tao, PU Lei, et al. Pilot test on the ROP-improvement BHA of vertical drilling tool & screw rod with equal wall thickness: a case study on Well Keshen A in the high-steep structure of Kuqa Piedmont Area[J]. Oil Drilling & Production Technology, 2020, 42(6): 684–690.

    [8] 汪海阁,苏义脑. 直井防斜打快理论研究进展[J]. 石油学报,2004,25(3):86–90. doi: 10.3321/j.issn:0253-2697.2004.03.018

    WANG Haige, SU Yinao. Progress of theoretical research on deviation control and drilling fast for vertical wells[J]. Acta Petrolei Sinica, 2004, 25(3): 86–90. doi: 10.3321/j.issn:0253-2697.2004.03.018

    [9] 卓云,张杰,王天华,等. VTK垂直钻井技术在川东地区的应用[J]. 天然气工业,2011,31(5):80–83. doi: 10.3787/j.issn.1000-0976.2011.05.021

    ZHUO Yun, ZHANG Jie, WANG Tianhua, et al. Application of the VertiTrak nonrotary drilling system in the eastern Sichuan Basin[J]. Natural Gas Industry, 2011, 31(5): 80–83. doi: 10.3787/j.issn.1000-0976.2011.05.021

    [10] 赵新瑞,姜敬华,奚艳红,等. 井斜控制理论及防斜钻井技术综述[J]. 钻采工艺,2000,23(1):4–9. doi: 10.3969/j.issn.1006-768X.2000.01.002

    ZHAO Xinrui, JIANG Jinghua, XI Yanhong, et al. Summarization on deviation control theory and anti-deflection drilling techno-logy[J]. Drilling & Production Technology, 2000, 23(1): 4–9. doi: 10.3969/j.issn.1006-768X.2000.01.002

    [11] 罗恒荣,崔晓杰,谭勇,等. 液力扭转冲击器配合液力加压器的钻井提速技术研究与现场试验[J]. 石油钻探技术,2020,48(3):58–62. doi: 10.11911/syztjs.2020037

    LUO Hengrong, CUI Xiaojie, TAN Yong, et al. Research and field test on drilling acceleration technology with hydraulic torsional impactor combined with hydraulic boosters[J]. Petroleum Drilling Techniques, 2020, 48(3): 58–62. doi: 10.11911/syztjs.2020037

    [12] 吕晓平,李国兴,王震宇,等. 扭力冲击器在鸭深1井志留系地层的试验应用[J]. 石油钻采工艺,2012,34(2):99–101. doi: 10.3969/j.issn.1000-7393.2012.02.027

    LYU Xiaoping, LI Guoxing, WANG Zhenyu, et al. Experiment of torkbuster on Well YS1 in Silurian Formation[J]. Oil Drilling & Production Technology, 2012, 34(2): 99–101. doi: 10.3969/j.issn.1000-7393.2012.02.027

    [13] 彭齐,周英操,周波,等. 凸脊型非平面齿PDC钻头的研制与现场试验[J]. 石油钻探技术,2020,48(2):49–55. doi: 10.11911/syztjs.2020035

    PENG Qi, ZHOU Yingcao, ZHOU Bo, et al. Development and field test of a non-planar cutter PDC bit with convex ridges[J]. Petroleum Drilling Techniques, 2020, 48(2): 49–55. doi: 10.11911/syztjs.2020035

    [14] 王滨,李军,邹德永,等. 适合强研磨性硬地层PDC-金刚石孕镶块混合钻头设计与应用[J]. 特种油气藏,2018,25(1):169–174. doi: 10.3969/j.issn.1006-6535.2018.01.035

    WANG Bin, LI Jun, ZOU Deyong, et al. Design and application of a PDC hybrid drill bit with impregnated diamond insert for the hard formation with strong abrasivity[J]. Special Oil & Gas Reservoirs, 2018, 25(1): 169–174. doi: 10.3969/j.issn.1006-6535.2018.01.035

    [15] 刘书斌,倪红坚,张恒. 轴扭复合冲击工具的研制与应用[J]. 石油钻探技术,2020,48(5):69–76. doi: 10.11911/syztjs.2020072

    LIU Shubin, NI Hongjian, ZHANG Heng. Development and applications of a compound axial and torsional impact drilling tool[J]. Petroleum Drilling Techniques, 2020, 48(5): 69–76. doi: 10.11911/syztjs.2020072

    [16] 胡群爱,孙连忠,张进双,等. 硬地层稳压稳扭钻井提速技术[J]. 石油钻探技术,2019,47(3):107–112. doi: 10.11911/syztjs.2019053

    HU Qun'ai, SUN Lianzhong, ZHANG Jinshuang, et al. Technology for drilling speed increase using stable WOB/torque for hard formations[J]. Petroleum Drilling Techniques, 2019, 47(3): 107–112. doi: 10.11911/syztjs.2019053

    [17] 胡思成,管志川,路保平,等. 锥形齿旋冲及扭冲的破岩过程与破岩效率分析[J]. 石油钻探技术,2021,49(3):87–93. doi: 10.11911/syztjs.2021035

    HU Sicheng, GUAN Zhichuan, LU Baoping, et al. Rock breaking process and efficiency analysis of conical cutting teeth under rotary and torsional impact[J]. Petroleum Drilling Techniques, 2021, 49(3): 87–93. doi: 10.11911/syztjs.2021035

    [18] 殷召海,李国强,王海,等. 克拉苏构造带博孜1 区块复杂超深井钻井完井关键技术[J]. 石油钻探技术,2021,49(1):16–21. doi: 10.11911/syztjs.2020130

    YIN Zhaohai, LI Guoqiang, WANG Hai, et al. Key technologies for drilling and completing ultra-deep wells in the Bozi 1 Block of Kelasu Structure[J]. Petroleum Drilling Techniques, 2021, 49(1): 16–21. doi: 10.11911/syztjs.2020130

    [19] 滕学清,白登相,杨成新,等. 塔北地区深井钻井提速配套技术及其应用效果[J]. 天然气工业,2013,33(7):68–73. doi: 10.3787/j.issn.1000-0976.2013.07.012

    TENG Xueqing, BAI Dengxiang, YANG Chengxin, et al. ROP enhancing technologies and their application in deep wells in the northern Tarim Basin[J]. Natural Gas Industry, 2013, 33(7): 68–73. doi: 10.3787/j.issn.1000-0976.2013.07.012

    [20] 袁国栋,王鸿远,陈宗琦,等. 塔里木盆地满深1井超深井钻井关键技术[J]. 石油钻探技术,2020,48(4):21–27. doi: 10.11911/syztjs.2020067

    YUAN Guodong, WANG Hongyuan, CHEN Zongqi, et al. Key drilling technologies for the ultra-deep well Manshen 1 in the Tarim Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 21–27. doi: 10.11911/syztjs.2020067

    [21] 薛懿伟,陈立强,徐鲲,等. 渤中19-6大气田深部潜山硬地层钻井提速技术研究与应用[J]. 中国海上油气,2020,32(4):140–146.

    XUE Yiwei, CHEN Liqiang, XU Kun, et al. Research and application of ROP improvement technology in deep buried hill hard formations of BZ19-6 large gas field[J]. China Offshore Oil and Gas, 2020, 32(4): 140–146.

    [22] 查春青,柳贡慧,李军,等. 复合冲击钻具的研制及现场试验[J]. 石油钻探技术,2017,45(1):57–61. doi: 10.11911/syztjs.201701010

    ZHA Chunqing, LIU Gonghui, LI Jun, et al. Development and field application of a compound percussive jet[J]. Petroleum Drilling Techniques, 2017, 45(1): 57–61. doi: 10.11911/syztjs.201701010

    [23] 兰凯,张金成,母亚军,等. 高研磨性硬地层钻井提速技术[J]. 石油钻采工艺,2015,37(6):18–22.

    LAN Kai,ZHANG Jincheng,MU Yajun,et al. Technology for increasing drilling speed in high abrasive hard formation[J]. Oil Drilling & Production Technology, 2015, 37(6): 18–22.

  • 期刊类型引用(15)

    1. 姚军,王春起,黄朝琴,杨永飞,孙海,张磊. 深层超深层油气藏高应力下数字岩心构建方法. 石油钻探技术. 2024(02): 38-47 . 本站查看
    2. 狄勤丰,尤明铭,李田心,周星,杨赫源,王文昌. 特深井钻柱动力学特性模拟与分析. 石油钻探技术. 2024(02): 108-117 . 本站查看
    3. 李军,杨宏伟,陈旺,龙震宇,张更. 超深井自动控制压井室内物理模拟试验及结果分析. 石油钻探技术. 2024(02): 31-37 . 本站查看
    4. 王春生,冯少波,张志,周波,吕晓钢,周宝. 深地塔科1井钻井设计关键技术. 石油钻探技术. 2024(02): 78-86 . 本站查看
    5. 曲豪,陈锋,陈家磊,张豪,明传中,李吉荣. 特深井井下等效冲击扭矩作用下钻铤接头三维力学特征分析. 石油钻探技术. 2024(02): 211-217 . 本站查看
    6. 黎然,李文哲,张佳寅,刘阳. 万米深井SDCK1井上部超大尺寸井眼钻井液技术. 石油钻探技术. 2024(02): 93-99 . 本站查看
    7. 傅超,杨进,刘华清,殷启帅,王磊,胡志强. 多维度深水浅层建井方式优选方法研究. 石油钻探技术. 2024(03): 40-46 . 本站查看
    8. 王大勇,马红滨,李欣龙,熊超,史怀忠,黄中伟,赫文豪. 高压水射流辅助锥形PDC齿破碎花岗岩试验研究. 石油机械. 2024(07): 36-44 . 百度学术
    9. 纪照生,袁国栋,晁文学,蒋金宝,白旺东. 塔里木盆地超深小井眼定向钻井提速提效关键技术. 石油钻探技术. 2024(04): 8-14 . 本站查看
    10. 徐忠正,赵明伟,刘佳伟,戴彩丽. 超深层耐高温压裂液研究进展与展望. 化工进展. 2024(09): 4845-4858 . 百度学术
    11. 崔海波. 深井底部钻具组合选型及防斜性能评价指标分析. 石油矿场机械. 2023(01): 9-14 . 百度学术
    12. 李涛,苏强,杨哲,徐卫强,胡锡辉. 川西地区超深井钻井完井技术现状及攻关方向. 石油钻探技术. 2023(02): 7-15 . 本站查看
    13. 马英文,杨进,李文龙,徐鲲,谢涛,杨保健. 渤中26-6油田发现井钻井设计与施工. 石油钻探技术. 2023(03): 9-15 . 本站查看
    14. 路保平,陈会年. 《石油钻探技术》50年与未来发展建议. 石油钻探技术. 2023(04): 3-10 . 本站查看
    15. 许华明,丛海月,侯平舒,王惠勇. 我国深层—超深层油气资源探矿权管理存在的问题及政策建议. 中国石油勘探. 2023(06): 70-77 . 百度学术

    其他类型引用(1)

图(3)  /  表(3)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  161
  • PDF下载量:  152
  • 被引次数: 16
出版历程
  • 收稿日期:  2022-01-09
  • 修回日期:  2022-06-26
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2022-09-29

目录

    /

    返回文章
    返回