高强微弹水泥浆在延长油田致密油水平井中的应用

王涛, 申峰, 展转盈, 马振锋, 刘云, 侯云翌

王涛, 申峰, 展转盈, 马振锋, 刘云, 侯云翌. 高强微弹水泥浆在延长油田致密油水平井中的应用[J]. 石油钻探技术, 2019, 47(5): 40-48. DOI: 10.11911/syztjs.2019082
引用本文: 王涛, 申峰, 展转盈, 马振锋, 刘云, 侯云翌. 高强微弹水泥浆在延长油田致密油水平井中的应用[J]. 石油钻探技术, 2019, 47(5): 40-48. DOI: 10.11911/syztjs.2019082
WANG Tao, SHEN Feng, ZHAN Zhuanying, MA Zhenfeng, LIU Yun, HOU Yunyi. The Application of High-Strength Micro-Elastic Cement Slurry in the Tight Oil Horizontal Wells of the Yanchang Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 40-48. DOI: 10.11911/syztjs.2019082
Citation: WANG Tao, SHEN Feng, ZHAN Zhuanying, MA Zhenfeng, LIU Yun, HOU Yunyi. The Application of High-Strength Micro-Elastic Cement Slurry in the Tight Oil Horizontal Wells of the Yanchang Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 40-48. DOI: 10.11911/syztjs.2019082

高强微弹水泥浆在延长油田致密油水平井中的应用

基金项目: 国家科技重大专项“陆相页岩气水平井高效低成本钻完井技术”(编号:2017ZX05039003)资助
详细信息
    作者简介:

    王涛(1986—),男,山西运城人,2010年毕业于中国石油大学(北京)石油工程专业,2013年获西南石油大学油气井工程专业硕士学位,工程师,主要从事固井技术研究及现场应用工作。E-mail:wt861104@126.com

  • 中图分类号: TE256+.1

The Application of High-Strength Micro-Elastic Cement Slurry in the Tight Oil Horizontal Wells of the Yanchang Oilfield

  • 摘要:

    为了提高延长油田致密油水平井的环空密封能力、保证多级缝网压裂开发效果,对水泥浆进行了功能化改性。结合该油田南部致密油储层特征、水平井井身结构和多级缝网压裂对固井水泥浆性能的要求,建立了套管–水泥环–地层受力模型,分析得到了水泥石杨氏模量与界面压力的关系图版,并据此设计了水泥浆;对丁苯胶粉进行了粒径优选、表面处理,并与甲酰胺及无机盐复配制得高强微弹剂,辅之以其他外加剂,形成了满足性能要求的高强微弹水泥浆。研究发现,水泥石杨氏模量越低、地层杨氏模量越高、压裂施工压力越低、井眼扩大率越小,则满足环空密封要求的水泥石抗压强度越小;与空白样相比,高强微弹水泥浆抗压强度提高51.8%、杨氏模量降低10.5%、抗折抗拉强度提高75.0%以上。该水泥浆在延长油田南部10余口致密油水平井进行了现场应用,水平段固井质量合格率达95%以上,分段压裂时未发生窜流。研究结果表明,高强微弹水泥浆可以提高延长油田致密油水平井压裂后的环空密封性,具有推广应用价值。

    Abstract:

    In order to improve the sealing ability of the annulus and ensure the multi-stage fracture-network fracturing development effect of tight oil horizontal wells in Yanchang Oilfield, the cement slurry had been functionally modified. Combined with the characteristics of tight oil reservoirs in the south part of this oilfield, horizontal well casing program and the requirements of multi-stage fracture-network fracturing on cement slurry properties, a casing-cement ring-formation force model was established, and the relationship chart between the Young’s modulus of the cement paste and the interfacial pressure was obtained. The particle size and surface treatment of styrene-butadiene rubber powder were optimized, and the high-strength micro-elastic agent was prepared by compounding formamide and inorganic salts, supplemented by other additives. After that, it was possible to form the high-strength micro-elastic cement slurry satisfying the requirements of this chart. The study found that the lower the Young's modulus of the hardened cement, the larger the Young's modulus of the formation, the lower the fracturing pressure and the smaller the hole enlargement rate, the lower the required compressive strength of the cement paste that met the requirements of annulus sealing would be. The developed cement slurry had perfect high-strength micro-elastic properties. Compared with the blank samples, the compressive strength was 51.8% higher, the Young's modulus was 10.5% lower, and the anti-breaking/tension strength was 75.0% higher. The cement slurry had been applied in more than 10 wells in the south part of the Yanchang Oilfield. The qualified rate of cementing quality in the horizontal section was over 95%, and no channeling occurred in the staged fracturing. The study results showed that the high-strength micro-elastic cement slurry could improve the post-fracturing sealing performance of tight oil horizontal wells in the Yanchang Oilfield, and demonstrated potential for widespread adoption.

  • 图  1   典型的致密油水平井井身结构

    Figure  1.   Casing program of typical tight oil horizontal well

    图  2   致密油水平井水泥石杨氏模量与界面压力的关系图版

    Figure  2.   Relationship chart between the Young’s modulus of cement paste and the interfacial pressure of the tight oil horizontal wells

    图  3   丁苯胶粉粒径和处理方式对水泥石抗压强度的影响

    Figure  3.   Effects of particle size and treatment method on cement paste strength

    图  4   高强微弹剂加量对水泥石力学性能的影响

    Figure  4.   Effect of high-strength micro-elastic agent dosage on mechanical performance of cement paste

    图  5   60 ℃下高强微弹水泥浆的稠化曲线

    Figure  5.   Thickening curve of high strength microelastic cement slurry at 60 °C

    图  6   水泥石杨氏模量测试结果

    Figure  6.   Young's modulus test results for cement paste

    图  7   霍普金森压杆试验所得应变–应力曲线

    Figure  7.   Strain-stress curve obtained from the Hopkinson pressure bar test

    图  8   高强微弹水泥石和常规水泥石的微观形态

    Figure  8.   Micro-morphology of high-strength micro-elastic cement paste and blank cement paste sample

    表  1   高强微弹水泥浆的常规性能

    Table  1   Conventional properties of high-strength micro-elastic cement slurry

    试验温度/℃稠化时间/min稠化过渡时间/min初始稠度/Bc抗压强度1)/MPa滤失量/mL游离液含量,%上下密度差/(kg·L–1
    4015251239.383200
    6012461548.793900
     注:1)为20.7 MPa下养护48 h后水泥石的抗压强度。
    下载: 导出CSV

    表  2   水泥石力学性能测试结果

    Table  2   Cement paste mechanical performance test results

    体系抗压强度/
    MPa
    杨氏模量/
    GPa
    抗折强度/
    MPa
    抗拉强度/
    MPa
    渗透率/
    mD
    高强微弹
    水泥浆
    50.5813.613.994.600.06
    空白样33.3215.212.282.530.28
    下载: 导出CSV

    表  3   W平12井高强微弹水泥浆封固段固井质量评价

    Table  3   Cementing quality evaluation of high-strength micro-elastic cement slurry sealing section in Well W Ping 12

    位置固井质量
    评价结果
    水泥封固段
    累计长度/m
    占总封固段
    长度比例,%
    第一界面1 380.0092.00
    中等120.008.00
    00
    第二界面1 358.2590.55
    中等141.759.45
    00
    下载: 导出CSV
  • [1] 崔宝文,林铁锋,董万百,等. 松辽盆地北部致密油水平井技术及勘探实践[J]. 大庆石油地质与开发, 2014, 33(5): 16–22. doi: 10.3969/J.ISSN.1000-3754.2014.05.003

    CUI Baowen, LIN Tiefeng, DONG Wanbai, et al. Horizontal well techniques and their exploration practices in the tight oil reservoirs in north Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(5): 16–22. doi: 10.3969/J.ISSN.1000-3754.2014.05.003

    [2] 钟文力,洪少青,吕聪,等. 页岩气水平井固井技术难点与对策浅析[J]. 非常规油气, 2015, 2(2): 69–72. doi: 10.3969/j.issn.2095-8471.2015.02.014

    ZHONG Wenli, HONG Shaoqing, LYU Cong, et al. Difficulties and countermeasures for shale gas horizontal well cementing[J]. Unconventional Oil & Gas, 2015, 2(2): 69–72. doi: 10.3969/j.issn.2095-8471.2015.02.014

    [3] 刘伟,陶谦,丁士东. 页岩气水平井固井技术难点分析与对策[J]. 石油钻采工艺, 2012, 34(3): 40–43.

    LIU Wei, TAO Qian, DING Shidong. Difficulties and countermeasures for cementing technology of sale gas horizontal well[J]. Oil Drilling & Production Technology, 2012, 34(3): 40–43.

    [4] 齐奉忠,杜建平. 哈里伯顿页岩气固井技术及对国内的启示[J]. 非常规油气, 2015, 2(5): 77–82. doi: 10.3969/j.issn.2095-8471.2015.05.014

    QI Fengzhong, DU Jianping. Halliburton shale gas well cementing technology and its enlightenment to domestic gas industry[J]. Unconventional Oil & Gas, 2015, 2(5): 77–82. doi: 10.3969/j.issn.2095-8471.2015.05.014

    [5]

    SALEHI R, PAIAMAN A M. A novel cement slurry design applicable to horizontal well conditions[J]. Petroleum & Coal, 2009, 51(4): 270–276.

    [6] 李伟,王涛,王秀玲,等. 陆相页岩气水平井固井技术: 以延长石油延安国家级陆相页岩气示范区为例[J]. 天然气工业, 2014, 34(12): 106–112. doi: 10.3787/j.issn.1000-0976.2014.12.015

    LI Wei, WANG Tao, WANG Xiuling, et al. Cementing technology for horizontal wells of terrestrial shale gas: a case study of the Yan'an national terrestrial shale gas E&P pilot area[J]. Natural Gas Industry, 2014, 34(12): 106–112. doi: 10.3787/j.issn.1000-0976.2014.12.015

    [7] 李建山. 泾河油田水平井固井难点与对策研究[J]. 石油钻探技术, 2017, 45(6): 19–23.

    LI Jianshan. Challenges and countermeasures of well cementing operations for horizontal wells in the Jinghe Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 19–23.

    [8] 胡德高,刘超. 四川盆地涪陵页岩气田单井可压性地质因素研究[J]. 石油实验地质, 2018, 40(1): 20–24. doi: 10.11781/sysydz201801020

    HU Degao, LIU Chao. Geological factors of well fracability in Fuling Shale Gas Field, Sichuan Basin[J]. Petroleum Geology and Experiment, 2018, 40(1): 20–24. doi: 10.11781/sysydz201801020

    [9] 李军,陈勉,柳贡慧,等. 套管、水泥环及井壁围岩组合体的弹塑性分析[J]. 石油学报, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023

    LI Jun, CHEN Mian, LIU Gonghui, et al. Elastic-plastic analysis of casing-concrete sheath-rock combination[J]. Acta Petrolei Sinica, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023

    [10] 许红林,张智,施太和,等. 压力和温度共同作用下的水泥环应力分析[J]. 石油钻探技术, 2014, 42(6): 45–48.

    XU Honglin, ZHANG Zhi, SHI Taihe, et al. Stress analysis of the cement sheath under both pressure and temperature[J]. Petroleum Drilling Techniques, 2014, 42(6): 45–48.

    [11] 张军涛,赵习森,王卫刚,等. 水平井体积压裂技术在黄陵致密油区的研究和实践[J]. 非常规油气, 2018, 5(3): 84–87, 97. doi: 10.3969/j.issn.2095-8471.2018.03.014

    ZHANG Juntao, ZHAO Xisen, WANG Weigang, et al. The research and practice of horizontal well volume fracturing technology in Huangling oil region[J]. Unconventional Oil & Gas, 2018, 5(3): 84–87, 97. doi: 10.3969/j.issn.2095-8471.2018.03.014

    [12] 谭春勤,刘伟,丁士东,等. SFP弹韧性水泥浆体系在页岩气井中的应用[J]. 石油钻探技术, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009

    TAN Chunqin, LIU Wei, DING Shidong, et al. Application of SFP elasto-toughness slurry in shale gas well[J]. Drilling Petroleum Techniques, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009

    [13] 韩福彬,孔凡军,姜宏图,等. 微膨增韧胶乳防气窜水泥浆的实验研究[J]. 钻井液与完井液, 2008, 25(5): 52–53, 56. doi: 10.3969/j.issn.1001-5620.2008.05.018

    HAN Fubin, KONG Fanjun, JIANG Hongtu, et al. Laboratory studies on a gas-check cement slurry[J]. Drilling Fluid & Completion Fluid, 2008, 25(5): 52–53, 56. doi: 10.3969/j.issn.1001-5620.2008.05.018

    [14] 李早元,郭小阳,罗发强,等. 油井水泥环降脆增韧作用机理研究[J]. 石油学报, 2008, 29(3): 438–441. doi: 10.3321/j.issn:0253-2697.2008.03.025

    LI Zaoyuan, GUO Xiaoyang, LUO Faqiang, et al. Research on mechanism of increasing flexibility and decreasing brittleness of cement sheath in oil well[J]. Acta Petrolei Sinica, 2008, 29(3): 438–441. doi: 10.3321/j.issn:0253-2697.2008.03.025

    [15] 路沙沙,麻凤海,邓飞. 橡胶颗粒掺量、粒径影响橡胶混凝土性能的试验分析[J]. 硅酸盐通报, 2014, 33(10): 2477–2483.

    LU Shasha, MA Fenghai, DENG Fei. Experimental analysis of crumb rubber concrete performance caused by content and grain diameter of rubber[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(10): 2477–2483.

    [16] 额日德木,王海龙,王萧萧,等. 表面改性废旧轮胎橡胶粉对水泥胶砂力学性能的影响[J]. 中国科技论文, 2015, 33(1): 73–77. doi: 10.3969/j.issn.2095-2783.2015.01.017

    E Ri De Mu, WANG Hailong, WANG Xiaoxiao, et al. Experimental study of the effect of surface modified waste tire rubber powder on the mechanical properties of cement mortar[J]. China Sciencepaper, 2015, 33(1): 73–77. doi: 10.3969/j.issn.2095-2783.2015.01.017

    [17] 许桂莉,杜华平,王碧,等. 油井水泥浆促凝剂体系的室内研究[J]. 精细石油化工进展, 2007, 8(10): 12–14. doi: 10.3969/j.issn.1009-8348.2007.10.004

    XU Guili, DU Huaping, WANG Bi, et al. Lab study of accelerating agent for oil well cement[J]. Advances in Fine Petrochemicals, 2007, 8(10): 12–14. doi: 10.3969/j.issn.1009-8348.2007.10.004

    [18] 陕西延长石油(集团)有限责任公司研究院.一种低温早强增韧水泥浆及其制备方法: CN201510979530.X[P].2016-05-11.

    Research Institute of Yanchang Petroleum (Group) Co., Ltd. One kind of early strength toughening cement slurry at low temperature and its preparation method: CN201510979530.X[P]. 2016-05-11.

    [19] 刘小利. 储气库井柔性水泥浆体系适应性评价实验[J]. 钻采工艺, 2016, 39(3): 11–14. doi: 10.3969/J.ISSN.1006-768X.2016.03.04

    LIU Xiaoli. Adaptability evaluation experiment of flexible cement slurry system in gas storage well[J]. Drilling & Production Technology, 2016, 39(3): 11–14. doi: 10.3969/J.ISSN.1006-768X.2016.03.04

    [20] 李明,杨雨佳,郭小阳. 碳纤维增强油井水泥石的力学性能[J]. 复合材料学报, 2015, 32(3): 782–788.

    LI Ming, YANG Yujia, GUO Xiaoyang. Mechanical properties of carbon fiber reinforced oil well cement composites[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 782–788.

    [21] 莫继春,李杨,卢东红,等. 霍布金森水泥石动态力学性能与射孔验窜试验装置[J]. 钻井液与完井液, 2004, 21(6): 8–11. doi: 10.3969/j.issn.1001-5620.2004.06.003

    MO Jichun, LI Yang, LU Donghong, et al. Instruments for cement stone dynamics properties and perforating channeling testing based on Hopkinson Spill Pressure Bar[J]. Drilling Fluid & Completion Fluid, 2004, 21(6): 8–11. doi: 10.3969/j.issn.1001-5620.2004.06.003

  • 期刊类型引用(13)

    1. 高健,汪海阁,宋世贵,宋先知,杨培福,张彦龙. 中国石油工程作业智能支持中心模式改革与初探. 钻采工艺. 2025(01): 37-45 . 百度学术
    2. 史配铭,贺会锋,朱明明,孟凡金,屈艳平,王玉鹏. 苏里格南部气田Φ152.4 mm小井眼大斜度井快速钻井关键技术. 石油工业技术监督. 2024(09): 51-56 . 百度学术
    3. 叶成,高世峰,鲁铁梅,屈沅治,戎克生,王常亮,任晗. 玛18井区水平井井壁失稳机理及强封堵钻井液技术研究. 石油钻采工艺. 2023(01): 38-46 . 百度学术
    4. 刘召友,孙永强,郭百利. 苏里格气田?165.1mm小井眼二开一趟钻优快钻井关键技术. 西部探矿工程. 2023(12): 26-30 . 百度学术
    5. 王平,沈海超. 加拿大M致密砂岩气藏高效开发技术. 石油钻探技术. 2022(01): 97-102 . 本站查看
    6. 王国娜,张海军,孙景涛,张巍,曲大孜,郝晨. 大港油田大型井丛场高效钻井技术优化与应用. 石油钻探技术. 2022(02): 51-57 . 本站查看
    7. 范家伟,袁野,李绍华,王彦秋,黄兰,尚钲凯,李君,陶正武. 塔里木盆地深层致密油藏地质工程一体化模拟技术. 断块油气田. 2022(02): 194-198 . 百度学术
    8. 魏绍蕾,苏映宏,黄学斌,肖玉茹. 玛湖油田开发经验对特低渗-致密油藏开发的借鉴意义. 当代石油石化. 2021(02): 33-38 . 百度学术
    9. 王忠良,周扬,文晓峰,龙斌,丁凡,陈邵维. 长庆油田小井眼超长水平段水平井钻井技术. 石油钻探技术. 2021(05): 14-18 . 本站查看
    10. 郝亚龙,葛云华,崔猛,纪国栋,殷鸽,黄家根. 钻头选型中的地层分层技术. 断块油气田. 2020(02): 248-252 . 百度学术
    11. 史配铭,薛让平,王学枫,王万庆,石崇东,杨勇. 苏里格气田致密气藏水平井优快钻井技术. 石油钻探技术. 2020(05): 27-33 . 本站查看
    12. 张雄,余进,毛俊,刘祖磊. 准噶尔盆地玛东油田水平井高性能油基钻井液技术. 石油钻探技术. 2020(06): 21-27 . 本站查看
    13. 张瑞平,万教育,李彬,付仕,马静,刘冬. 直井段偏移对后期定向钻井作业的影响分析. 探矿工程(岩土钻掘工程). 2019(07): 28-33 . 百度学术

    其他类型引用(3)

图(8)  /  表(3)
计量
  • 文章访问数:  1610
  • HTML全文浏览量:  470
  • PDF下载量:  59
  • 被引次数: 16
出版历程
  • 收稿日期:  2018-10-18
  • 修回日期:  2019-06-19
  • 网络出版日期:  2019-08-25
  • 刊出日期:  2019-08-31

目录

    /

    返回文章
    返回