An R-K-S Equation-Based Study on the Heat Transmission Features of Multi- Component Thermal Fluid Injection through Concentric Dual-Tubing
-
摘要: 为了解同心双管注多元热流体的传热特征,获得最优的井底蒸汽参数,基于实际气体R-K-S状态方程和质量、能量与动量守恒方程,结合经典地层内瞬态传热模型,建立了同心双管注多元热流体井筒传热数学模型。在验证模型的基础上,分析了井筒内混合汽/气典型传热特征,近井口处无接箍油管和内油管环空之间的温差较小,会导致流体热物性参数剧烈变化,但温度梯度快速趋于一致。应用该模型对非凝结气含量和注汽温度进行了优化计算,结果表明,非凝结气含量增大,井底过热度减小;随着无接箍油管注汽温度升高,井底过热度增加。研究结果表明,注汽参数对井筒内热参数分布有明显影响,现场作业时要根据井眼实际情况优选注汽参数。Abstract: A mathematic model for heat transfer in wellbores when injecting multi-component thermal fluid through concentric dual-tubing was constructed with the goal of better understanding the heat transmission characteristics of multi-component thermal fluid injection through concentric dual-tubing and determine the optimum bottom hole steam parameters.The study involved modeling wellbore behaviors in response to the injection of superheated multi-component thermal fluid through concentric dual-tubing.To establish the model,the actual gas based R-K-S equation of state,the mass,energy and momentum conservation equation and the transient heat transfer model in classical stratum were used.After verification with the model,the typical heat transfer features of the mixed steam/gases within the wellbore were analyzed,and the analysis indicated that a small temperature difference between the integral joint tubing and the inner tubing annulus near the wellhead may lead to dramatic changes in the fluid thermo-physical parameters,but the temperature gradients converge quickly.The content of non-condensing gases and the steam injection temperature were optimized with the model,and the results showed that the downhole superheat degree decreased as the content of the non-condensing gases increased.However,the downhole superheat degree increased as the steam injection temperature in the integral joint tubing increased.The results of the study demonstrated that the steam injection parameters had a significant influence on the distribution of the thermal parameters within the wellbore.The way steam was injected affected wellbore temperatures.Therefore,it was suggested to optimize the steam injection parameters based on the actual boreholes used during field operations.
-
-
[1] 周娜,姜东,杜玮暄,等.稠油井过泵旋流混合降黏举升技术[J].石油钻探技术,2016,44(6):84-87. ZHOU Na,JIANG Dong,DU Weixuan,et al.Lifting technology by swirl pumping vortex-reducing viscosity for heavy oil production well[J].Petroleum Drilling Techniques,2016,44(6):84-87. [2] 陶磊,李松岩,程时清.稠油油藏水平井泡沫酸解堵技术[J].石油钻探技术,2015,43(6):76-80. TAO Lei,LI Songyan,CHENG Shiqing.Foamed acid plug-removal technique for horizontal wells in heavy oil reservoirs[J].Petroleum Drilling Techniques,2015,43(6):76-80. [3] 思娜,安雷,赵阳,等.重油、油砂原位燃烧技术进展及发展思考[J].石油钻探技术,2015,43(5):106-111. SI Na,AN Lei,ZHAO Yang,et al.Advance and future development of ISC for heavy oil and oil sahd development[J].Petroleum Drilling Techniques,2015,43(5):106-111. [4] SUN Fengrui,YAO Yuedong,LI Xiangfang,et al.A numerical approach for obtaining type curves of superheated multi-component thermal fluid flow in concintric dual-tubing wells[J].International Journal of Heat and Mass Transfer,2017,111: 41-53.
[5] SUN Fengrui,YAO Yuedong,CHEN Mingqiang,et al.Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency[J].Energy,2017,125:795-804.
[6] 孙逢瑞,黄世军,邹明.过热蒸汽吞吐水平井产能评价模型[J].特种油气藏,2016,23(3):122-125. SUN Fengrui,HUANG Shijun,ZOU Ming.Productivity forecast model of horizontal well with superheated steam huff-puff[J].Special Oil Gas Reservoir,2016,23(3):122-125. [7] 孙逢瑞,姚约东,李相方,等.热采水平井注多元热流体水平段传质传热模型[J].断块油气田,2017,24(2):259-263. SUN Fengrui,YAO Yuedong,LI Xiangfang,et al.Mathematical modeling of the mass and heat transfer process for multi-component thermal fluid injection wells[J].Fault-Block Oil Gas Field,2017,24(2):259-263. [8] 黄世军,李秋,程林松,等.海上多元热流体注入沿程热物性评价模型[J].西南石油大学学报(自然科学版),2015,37(1): 91-97. HUANG Shijun,LI Qiu,CHENG Linsong,et al.An evaluation model on a long-pipe thermal parameter of multi-component heat fluid injected in offshore reservoirs[J].Journal of Southwest Petroleum University(Natural Science Edition),2015,37(1):91-97. [9] 刘慧卿.热力采油原理与设计[M].北京:石油工业出版社,2013:148-150. LIU Huiqing.Principle and design of thermal oil recovery[M].Beijing:Petroleum Industry Press,2013:148-150. [10] CAETANO E F,BRILL J P.Upward vertical two-phase flow through an annulus:partⅡ:modeling bubble,slug,and annular flow[J].Journal of Energy Resources Technology,1992,114(1):14-30.
[11] HASAN A R,KABIR C S.Two-phase flow in vertical and inclined annuli[J].International Journal of Multiphase Flow,1992,18(2):279-293.
[12] 东晓虎.海上稠油藏多元热流体开发机理及方式筛选研究[D].北京:中国石油大学(北京),2014. DONG Xiaohu.The development mechanism and method screening for offshere hesvy oil reservoirs with multi-thermal fluid[D].Beijing:China University of Petroleum(Bingjing),2014. [13] GU Hao,CHENG Linsong,HUANG Shijun,et al.Prediction of thermophysical properties of saturated steam and wellbore heat losses in concentric dual-tubing steam injection wells [J].Energy,2014,75:419-429.
[14] 程文龙,韩冰冰.基于实际气体状态方程的多元热流体井筒传热模型[J].石油学报,2015,36(11):1402-1410. CHENG Wenlong,HAN Bingbing.Wellbore heat transfer model based on real gas state equation[J].Acta Petrolei Sinica,2015,36(11):1402-1410. [15] 袁恩熙.工程流体力学[M].北京:石油工业出版社,1982:87-163. YUAN Enxi.Engineering fluid mechanics[M].Beijing:Petroleum Industry Press,1982:87-163. [16] CHENG Wenlong,HUANG Yonghua,LIU Na,et al.Estimation of geological formation thermal conductivity by using stochastic approximation method based on well-log temperature data[J].Energy,2012,38:21-30.
[17] 郭润生,何福城.逸度及活度[M].北京:高等教育出版社,1995:15-30. GUO Runsheng,HE Fucheng.Fugacity and activity[M].Beijing:Higher Education Press,1995:15-30. [18] 陈宏芳,杜建华.高等工程热力学[M].北京:清华大学出版社,2003:160-168. CHEN Hongfang,DU Jianhua.Advanced engineering thermo dynamics[M].Beijing:Tsinghua University Press,2003:160-168. [19] 陈则韶.高等工程热力学[M].北京:高等教育出版社,2008:153-180. CHEN Zeshao.Advanced engineering thermo dynamics[M].Beijing:Higher Education Press,2008:153-180. [20] SOAVE G.Equilibrium constants from a modified Redlich-Kwong equation of state[J].Chemical Engineering Science,1972,27(6):1197-1203.
[21] 童景山,李敬.流体热物性的计算[M].北京:中国石化出版社,1996:209-238. TONG Jingshan,LI Jing.Calculation of thermo physical properties of fluids[M].Beijing:China Petrochemical Press,1996:209-238. [22] 陈明.海上稠油热采技术探索与实践[M].北京:石油工业出版社,2012:123-150. CHEN Ming.Exploration and practice of offshore heavy oil thermal recovery technology[M].Beijing:Petroleum Industry Press,2012:123-150. [23] SUN Fengrui,LI Chunlan,CHENG Linsong,et al.Production performance analysis of heavy oil recovery by cyclic superheated steam stimulation[J].Energy,2017,121:356-371.
[24] SUN Fengrui,YAO Yuedong,LI Xiangfang,et al.The flow and heat transfer characteristics of superheated steam in offshore wells and analysis of superheated steam performance[J].Computers Chemical Engineering,2017,100:80-93.
[25] 孙逢瑞,黄世军,王岩,等.过热蒸汽吞吐水平井注采参数多因素正交试验研究[J].北京石油化工学院学报,2016,24(2): 17-20. SUN Fengrui,HUANG Shijun,WANG Yan,et al.Multi-factor orthogonal test on injection parameters of horizontal wells with superheated steam stimulation[J].Journal of Beijing Institute of Petrochemical Technology,2016,24(2):17-20. [26] 孙逢瑞,邹明,李乾.特稠油过热蒸汽吞吐产能预测模型[J].北京石油化工学院学报,2016,24(1):12-16. SUN Fengrui,ZOU Ming,LI Qian.Production capacity model for cyclic superheated steam stimulation of extra-heavy oil reservoir[J].Journal of Beijing Institute of Petrochemical Technology,2016,24(1):12-16. [27] 孙逢瑞,姚约东,李相方,等.稠油油藏蒸汽吞吐水平井生产动态分析[J].断块油气田, 2017,24(1):83-86. SUN Fengrui,YAO Yuedong,LI Xiangfang,et al.Production performance of cyclic steam stimulation horizontal well in heavy oil reservoirs[J].Fault-Block Oil Gas Field,2017,24(1):83-86. [28] 吴正彬,刘慧卿,庞占喜,等.稠油油藏气体-泡沫辅助注蒸汽实验与数值模拟[.J].石油钻采工艺,2016,38(6):852-858. WU Zhengbin,LIU Huiqing,PANG Zhanxi,et al.Numerical simulation and tests of gas-foam assisted steam-flooding for heavy oil development[J].Oil Drilling Production Technology,2016,38(6):852-858. [29] 张宁,阚亮,张润芳,等.海上稠油油田非均相在线调驱提高采收率技术:以渤海B油田E井组为例[J].石油钻采工艺,2016,38(3):387-391. ZHANG Ning,KAN Liang,ZHANG Runfang,et al.EOR technology by heterogeneous on-line profile control and flooding for offshore heavy oil field:take Well Group E of Bohai B Oilfield as an example [J].Oil Drilling Production Technology,2016,38(3):387-391. [30] 徐建军.泡沫调剖改善多元热流体开采效果技术研究与应用[J].石油钻采工艺,2015,37(2):114-116. XU Jianjun.Research and application of improving multiple thermal fluid recovery effect by profile control with foam[J].Oil Drilling Production Technology,2015,37(2):114-116. [31] 李岩.大庆西部斜坡区稠油油藏热采开发界限研究[J].断块油气田,2016,23(4):505-508. LI Yan.Boundary values of thermal recovery methods in Daqing western slope reservoirs[J].Fault-Block Oil Gas Field,2016,23(4):505-508. [32] 赵淑霞,何应付,王铭珠,等.特超稠油HDCS吞吐影响因素分析及潜力评价方法[J].断块油气田,2016,23(1):69-72. ZHAO Shuxia,HE Yingfu,WANG Mingzhu,et al.Influence factor and potential evaluation of HDCS huff and puff for super-heavy oil[J].Fault-Block Oil Gas Field,2016,23(1):69-72. [33] 孙逢瑞,李春兰,邹明,等.过热蒸汽吞吐直井产能预测模型[J].石油化工高等学校学报,2016,29(4):25-28. SUN Fengrui,LI Chunlan,ZOU Ming,et al.Production calculation model for superheated steam stimulation of vertical well[J].Journal of Petrochemical Universities,2016,29(4):25-28. -
期刊类型引用(35)
1. 汪海阁,高博,郑有成,赵飞,崔猛,丁燕,邢世旺. 机器学习在钻柱振动识别与预测中的研究进展. 天然气工业. 2024(01): 149-158 . 百度学术
2. 魏娟,常嘉乾,于洋,李杰,余松. 基于柔性冲击提速减振装置的研制与分析. 机械设计与研究. 2024(02): 90-94+101 . 百度学术
3. 狄勤丰,杨赫源,王文昌,骆大坤,张鹤,陈锋. 钻柱动力学研究进展及发展趋势. 石油科学通报. 2024(02): 224-239 . 百度学术
4. 李玉梅,邓杨林,张涛,于丽维,刘明. 钻柱的黏滑与高频扭转耦合振动测量与分析. 石油机械. 2024(05): 40-46 . 百度学术
5. 狄勤丰,尤明铭,李田心,周星,杨赫源,王文昌. 特深井钻柱动力学特性模拟与分析. 石油钻探技术. 2024(02): 108-117 . 本站查看
6. 曲豪,陈锋,陈家磊,张豪,明传中,李吉荣. 特深井井下等效冲击扭矩作用下钻铤接头三维力学特征分析. 石油钻探技术. 2024(02): 211-217 . 本站查看
7. 王文昌,段浩宇,李宁,王孝亮,狄勤丰. Power-V诱导的钻柱黏滑振动特征分析. 上海大学学报(自然科学版). 2024(02): 299-307 . 百度学术
8. 石祥超,焦烨,刘景涛,王兆巍,陈帅. 考虑深井井下动力钻具影响的钻柱粘滑振动规律. 天然气工业. 2024(06): 87-97 . 百度学术
9. 张俊,陈修平,李亚峰,王冲,薛启龙. 井下钻具耦合振动测量模型及实钻数据分析. 西安石油大学学报(自然科学版). 2024(04): 68-75 . 百度学术
10. 况雨春,张涛,林伟. 小尺度水平井钻柱动力学实验台架研制及应用. 石油钻探技术. 2024(04): 15-23 . 本站查看
11. 邓小东,李明. 滤波稳定器适用性分析及试验评价. 石油工程建设. 2024(S1): 160-165 . 百度学术
12. 张鑫,张涛,李玉梅,房萍. 基于PCA-LSTM的黏滑振动水平评估方法研究. 石油机械. 2023(02): 18-25 . 百度学术
13. 幸雪松,庞照宇,武治强,甘伦科,毛良杰. 钻头与岩石互作用下钻柱黏滑振动规律研究. 石油机械. 2023(05): 1-8 . 百度学术
14. 尤立春,白德宇,马志鑫,王录阳. 石油钻机钻井中钻杆粘滑振动的建模和控制方法. 电气传动自动化. 2023(04): 1-6 . 百度学术
15. 胡清富,司小东,李增乐,林辉. 伊拉克B9区块大井眼钻柱粘滑振动分析及控制技术. 西部探矿工程. 2023(10): 61-64 . 百度学术
16. 侯祥雨,刘显波,龙新华,蔡国平,孟光. 复杂变时滞作用下的钻头纵扭耦合非线性振动. 动力学与控制学报. 2023(08): 55-67 . 百度学术
17. 张涛,刘岱轩,刘伟,李玉梅. 基于近钻头测量数据的异常振动预警方法研究. 石油机械. 2023(10): 16-22+66 . 百度学术
18. 郭晓强,柳军,王建勋,李潇,魏安超,朱海燕. 超高温高压曲井钻柱纵-横-扭耦合振动模型及黏滑振动特性研究. 机械工程学报. 2022(05): 119-135 . 百度学术
19. 陈超山,谢国进,卢敏,黄斌. 基于Stribeck模型的摩擦界面粘滑振动数值仿真分析. 科技创新与应用. 2022(23): 1-8 . 百度学术
20. 汪伟,柳贡慧,李军,查春青,连威,夏铭莉. 脉动式扭转冲击钻井工具工作特性分析与测试. 石油钻探技术. 2022(05): 63-69 . 本站查看
21. 张鹤,狄勤丰,王文昌,陈锋,段浩宇. 基于状态依赖时滞的钻柱动力学稳定性分析. 振动与冲击. 2022(22): 233-240+283 . 百度学术
22. 唐翰文,张涛,李玉梅,李雷,张京华,胡冬良. 基于优化XGBoost的近钻头粘滑振动等级评估方法. 系统仿真学报. 2021(11): 2704-2710 . 百度学术
23. 石李保,邹德永,王皓琰,汪威,宋洵成. PDC切削齿切削深度对PDC钻头黏滑振动影响动态实验. 石油钻采工艺. 2021(06): 750-755+790 . 百度学术
24. 董平,陈英杰,王雪亚. 单向流体驱动径向冲击运动原理的研究. 机械科学与技术. 2020(04): 524-530 . 百度学术
25. 张端瑞,文涛,蒲磊,迟军,周小君,梁红军,赵彩庭. “垂直钻井工具+等壁厚螺杆”提速钻具组合先导性试验——以库车山前高陡构造克深A井为例. 石油钻采工艺. 2020(06): 684-690 . 百度学术
26. 李林涛,万小勇,黄传艳,潘丽娟,郭知龙,曹宗波,张伟博. 双向卡瓦可回收高温高压封隔器的研制与应用. 石油机械. 2019(03): 81-86 . 百度学术
27. 胡秋萍,贾文强,王力,綦耀光,张芬娜. 基于电示功图计算煤层气井动液面的方法. 石油机械. 2019(06): 85-90 . 百度学术
28. 汪伟,柳贡慧,李军,查春青,黄涛. 扭转冲击钻井工具的工作特性. 断块油气田. 2019(03): 385-388 . 百度学术
29. 孔华,兰凯,刘香峰,刘明国,晁文学,郗刘明. 基于振动实测的非均质地层钻头失效分析与对策. 天然气工业. 2019(12): 110-115 . 百度学术
30. 张霞,张涛,李玉梅,黄升. 基于EMD的井下近钻头振动数据分析. 北京信息科技大学学报(自然科学版). 2019(06): 59-63 . 百度学术
31. 黄升,张涛,柳贡慧,李军,张霞. 基于近钻头振动数据分析方法及应用研究. 钻采工艺. 2019(06): 1-4+157 . 百度学术
32. 黄升,张涛,黄崇君,李玉梅,邓虎,张霞. 井下数据获取及粘滑特征分析(英文). 系统仿真学报. 2019(11): 2517-2526 . 百度学术
33. 王超,李军,柳贡慧,张涛,徐小峰. 近钻头井下钻具运动特征及异常状态分析方法. 石油钻探技术. 2018(02): 50-57 . 本站查看
34. 李胜. 超千米深井高地压易变形巷道贯通测量技术研究. 中小企业管理与科技(中旬刊). 2018(01): 169-170 . 百度学术
35. 张奇志,吴永强. 抑制钻柱黏滑振动和钻头反弹的建模与控制. 石油钻采工艺. 2018(05): 553-558+595 . 百度学术
其他类型引用(26)
计量
- 文章访问数: 9377
- HTML全文浏览量: 76
- PDF下载量: 10933
- 被引次数: 61