“Four Points and Five Types” Remaining Oil Classification in Oilfields with Ultra-High Water Cut
-
摘要: 特高含水期油田的油水分布状况复杂,需要明确其剩余油的定义、属性分类方法和水驱开发潜力评价方法。在油藏水驱极限驱油效率研究和渗流力学分析的基础上,选取油水渗流特征点对应的4个含油饱和度为剩余油分类界限点,建立了特高含水期油田"四点五类"剩余油属性分类方法。将特高含水期油田剩余油划分为富集油、相对富集油、可动用油、难动用油和残余油5类,分析了这5类剩余油的具体属性、开发调整对策及措施方向。根据提出的油田水驱开发潜力评价方法,将特高含水期油田水驱开发潜力划分为水驱极限潜力、可动用潜力和难动用潜力3类,并对中国石化10个中高渗透油田的剩余油属性分类和水驱开发潜力进行了分析,结果表明,特高含水后期普遍分布的剩余油以难动用油为主,局部富集的剩余油以相对富集油为主,注水开发极限潜力巨大,但近4/5为难动用潜力油藏。特高含水期油田"四点五类"剩余油分类方法明确了剩余油的分布特征,为制定不同类型剩余油开发调整措施提供了理论依据。Abstract: Oil and water distribution within the reservoirs in mature oilfields with extremely high water cut is very complicated. To tap the development potential of such fields, it is necessary to have a clear definition of the remaining oil, its attributes and classification method, and the approaches for evaluating the potential for further developing the fields with a waterflooding program. A "Four Points and Five Types" remaining oil classification method for oil fields with ultra-high water cut was developed in this paper by selecting 4 oil saturation points corresponding to the oil-water seepage characteristics as the boundary points of remaining oil classification, based on the investigation of the ultimate oil displacement efficiency and the analysis of the seepage mechanics. The remaining oil in fields with ultra-high water cut was classified into five types, including enriched oil, somewhat enriched oil, movable oil, hard-to-move oil, and residual oil. The specific features and re-development strategies of these five types of remaining oil were analyzed. Based on the presented method for evaluating the waterflooding development potential of oilfields, the waterflooding development potential of oil fields with extremely high water cut was categorized into three types, namely, ultimate waterflooding potential, movable potential and hard-to-move potential. Investigation of the remaining oil types and waterflooding development potential of 10 fields with mid-high permeability showed that majority of the remaining oil in fields with extremely high water cut was hard-to-move oil, and there was rather enriched oil in some local areas. Although there was huge waterflooding development potential in such fields, nearly 4/5 of the remaining oil was hard to produce. In summary, the "Four Points and Five Types" remaining oil classification method for fields with extremely high water cut helped to make clear the remaining oil distribution features and provided supports for working out re-development strategies of the various types of remaining oil.
-
Keywords:
- ultra-high water cut /
- remaining oil /
- classification /
- waterflooding /
- development potential
-
-
[1] 刘宝珺,谢俊,张金亮.我国剩余油技术研究现状与进展[J].西北地质,2004,37(4):1-6. LIU Baojun,XIE Jun,ZHANG Jinliang.Present situation and advance of remaining oil research technology in China[J].Northwestern Geology,2004,37(4):1-6. [2] 李阳,王端平,刘建民.陆相水驱油藏剩余油富集区研究[J].石油勘探与开发,2005,32(3):91-96. LI Yang,WANG Duanping,LIU Jianmin.Remaining oil enrichment areas in continental water flooding reservoirs[J].Petroleum Exploration and Development,2005,32(3):91-96. [3] 韩大匡.准确预测剩余油相对富集区 提高油田注水采收率研究[J].石油学报,2007,28(2):73-78. HAN Dakuang.Precisely predicting abundant remaining oil and improving the secondary recovery of mature oilfields[J].Acta Petrolei Sinica,2007,28(2):73-78. [4] 纪淑红,田昌炳,石成方,等.高含水阶段重新认识水驱油效率[J].石油勘探与开发, 2012,39(3):338-345. JI Shuhong,TIAN Changbing,SHI Chengfang,et al.New understanding on water-oil displacement efficiency in a high water-cut stage[J].Petroleum Exploration and Development, 2012,39(3):338-345. [5] 邴绍献.基于特高含水期油水两相渗流的水驱开发特征研究[D].成都:西南石油大学,2013. BING Shaoxian.Study on water drive development characteristics based on the oil-water two phase flow of ultra-high water cut stage[D].Chengdu:Southwest Petroleum University,2013. [6] 刘浩瀚,刘志斌,丁显峰.特高含水期剩余油孔道选择微观机理研究[J].石油天然气学报,2013,35(5):92-97. LIU Haohan,LIU Zhibin,DING Xianfeng.Micro-pore path selection mechanism of remaining oil at ultra-high water-cut stage[J].Journal of Oil and Gas Technology,2013,35(5):92-97. [7] 王端平.对胜利油区提高原油采收率潜力及转变开发方式的思考[J].油气地质与采收率,2014,21(4):1-4. WANG Duanping.Some thoughts about potential of oil recovery efficiency and development model transition in Shengli District[J].Petroleum Geology and Recovery Efficiency,2014,21(4): 1-4. [8] 闫文华,焦龙.高注水倍数非均质岩心驱油效果实验研究[J].石油化工高等学校学报,2014,27(4):48-51. YAN Wenhua,JIAO Long.Heterogeneous cores of high injection multiples flooding effect[J].Journal of Petrochemical Universities,2014,27(4):48-51. [9] 崔传智,徐建鹏,王端平,等.特高含水阶段新型水驱特征曲线[J].石油学报, 2015,36(10):1267-1271. CUI Chuanzhi,XU Jianpeng,WANG Duanping,et al.A new water flooding characteristic curve at ultra-high water cut stage[J].Acta Petrolei Sinica,2015,36(10):1267-1271. [10] 王友启.陆相特高含水油田固水提高采收率机制研究[J].中国石油大学学报(自然科学版),2012,36(6):108-112. WANG Youqi.Research on mechanism of enhanced oil recovery using immobilizing movable water in continental extra-high water cut oilfield[J].Journal of China University of Petroleum(Edition of Natural Science),2012,36(6):108-112. [11] 王友启.胜利油田高含水期油藏水驱精细调整技术方向[J].石油钻探技术,2011,39(1):101-104. WANG Youqi.Fine adjustment direction of water flooding in high watercut oil reservoirs of Shengli Oilfield[J].Petroleum Drilling Techniques,2011,39(1):101-104. [12] 董利飞,岳湘安,苏群,等.非均质储层水驱剩余油分布及其挖潜室内模拟研究[J].石油钻采工艺,2015,37(6):63-66. DONG Lifei,YUE Xiang’an,SU Qun,et al.Distribution of remaining oil by water flooding in heterogeneous reservoirs and indoor simulation study for its potential tapping[J].Oil Drilling Production Technology,2015,37(6):63-66. [13] 姜瑞忠,乔欣,滕文超,等.储层物性时变对油藏水驱开发的影响[J].断块油气田,2016,23(6):768-771. JIANG Ruizhong,QIAO Xin,TENG Wenchao,et al.Impact of physical properties time variation on waterflooding reservoir development[J].Fault-block Oil Gas Field,2016,23(6):768-771. [14] 马康,姜汉桥,李俊键,等.基于核磁共振的复杂断块油藏微观动用均衡程度实验[J].断块油气田,2016,23(6):745-748. MA Kang,JIANG Hanqiao,LI Junjian,et al.Experimental study on micro balanced development of complex fault-block reservoirs based on nuclear magnetic resonance[J].Fault-Block Oil Gas Field,2016,23(6):745-748. -
期刊类型引用(35)
1. 汪海阁,高博,郑有成,赵飞,崔猛,丁燕,邢世旺. 机器学习在钻柱振动识别与预测中的研究进展. 天然气工业. 2024(01): 149-158 . 百度学术
2. 魏娟,常嘉乾,于洋,李杰,余松. 基于柔性冲击提速减振装置的研制与分析. 机械设计与研究. 2024(02): 90-94+101 . 百度学术
3. 狄勤丰,杨赫源,王文昌,骆大坤,张鹤,陈锋. 钻柱动力学研究进展及发展趋势. 石油科学通报. 2024(02): 224-239 . 百度学术
4. 李玉梅,邓杨林,张涛,于丽维,刘明. 钻柱的黏滑与高频扭转耦合振动测量与分析. 石油机械. 2024(05): 40-46 . 百度学术
5. 狄勤丰,尤明铭,李田心,周星,杨赫源,王文昌. 特深井钻柱动力学特性模拟与分析. 石油钻探技术. 2024(02): 108-117 . 本站查看
6. 曲豪,陈锋,陈家磊,张豪,明传中,李吉荣. 特深井井下等效冲击扭矩作用下钻铤接头三维力学特征分析. 石油钻探技术. 2024(02): 211-217 . 本站查看
7. 王文昌,段浩宇,李宁,王孝亮,狄勤丰. Power-V诱导的钻柱黏滑振动特征分析. 上海大学学报(自然科学版). 2024(02): 299-307 . 百度学术
8. 石祥超,焦烨,刘景涛,王兆巍,陈帅. 考虑深井井下动力钻具影响的钻柱粘滑振动规律. 天然气工业. 2024(06): 87-97 . 百度学术
9. 张俊,陈修平,李亚峰,王冲,薛启龙. 井下钻具耦合振动测量模型及实钻数据分析. 西安石油大学学报(自然科学版). 2024(04): 68-75 . 百度学术
10. 况雨春,张涛,林伟. 小尺度水平井钻柱动力学实验台架研制及应用. 石油钻探技术. 2024(04): 15-23 . 本站查看
11. 邓小东,李明. 滤波稳定器适用性分析及试验评价. 石油工程建设. 2024(S1): 160-165 . 百度学术
12. 张鑫,张涛,李玉梅,房萍. 基于PCA-LSTM的黏滑振动水平评估方法研究. 石油机械. 2023(02): 18-25 . 百度学术
13. 幸雪松,庞照宇,武治强,甘伦科,毛良杰. 钻头与岩石互作用下钻柱黏滑振动规律研究. 石油机械. 2023(05): 1-8 . 百度学术
14. 尤立春,白德宇,马志鑫,王录阳. 石油钻机钻井中钻杆粘滑振动的建模和控制方法. 电气传动自动化. 2023(04): 1-6 . 百度学术
15. 胡清富,司小东,李增乐,林辉. 伊拉克B9区块大井眼钻柱粘滑振动分析及控制技术. 西部探矿工程. 2023(10): 61-64 . 百度学术
16. 侯祥雨,刘显波,龙新华,蔡国平,孟光. 复杂变时滞作用下的钻头纵扭耦合非线性振动. 动力学与控制学报. 2023(08): 55-67 . 百度学术
17. 张涛,刘岱轩,刘伟,李玉梅. 基于近钻头测量数据的异常振动预警方法研究. 石油机械. 2023(10): 16-22+66 . 百度学术
18. 郭晓强,柳军,王建勋,李潇,魏安超,朱海燕. 超高温高压曲井钻柱纵-横-扭耦合振动模型及黏滑振动特性研究. 机械工程学报. 2022(05): 119-135 . 百度学术
19. 陈超山,谢国进,卢敏,黄斌. 基于Stribeck模型的摩擦界面粘滑振动数值仿真分析. 科技创新与应用. 2022(23): 1-8 . 百度学术
20. 汪伟,柳贡慧,李军,查春青,连威,夏铭莉. 脉动式扭转冲击钻井工具工作特性分析与测试. 石油钻探技术. 2022(05): 63-69 . 本站查看
21. 张鹤,狄勤丰,王文昌,陈锋,段浩宇. 基于状态依赖时滞的钻柱动力学稳定性分析. 振动与冲击. 2022(22): 233-240+283 . 百度学术
22. 唐翰文,张涛,李玉梅,李雷,张京华,胡冬良. 基于优化XGBoost的近钻头粘滑振动等级评估方法. 系统仿真学报. 2021(11): 2704-2710 . 百度学术
23. 石李保,邹德永,王皓琰,汪威,宋洵成. PDC切削齿切削深度对PDC钻头黏滑振动影响动态实验. 石油钻采工艺. 2021(06): 750-755+790 . 百度学术
24. 董平,陈英杰,王雪亚. 单向流体驱动径向冲击运动原理的研究. 机械科学与技术. 2020(04): 524-530 . 百度学术
25. 张端瑞,文涛,蒲磊,迟军,周小君,梁红军,赵彩庭. “垂直钻井工具+等壁厚螺杆”提速钻具组合先导性试验——以库车山前高陡构造克深A井为例. 石油钻采工艺. 2020(06): 684-690 . 百度学术
26. 李林涛,万小勇,黄传艳,潘丽娟,郭知龙,曹宗波,张伟博. 双向卡瓦可回收高温高压封隔器的研制与应用. 石油机械. 2019(03): 81-86 . 百度学术
27. 胡秋萍,贾文强,王力,綦耀光,张芬娜. 基于电示功图计算煤层气井动液面的方法. 石油机械. 2019(06): 85-90 . 百度学术
28. 汪伟,柳贡慧,李军,查春青,黄涛. 扭转冲击钻井工具的工作特性. 断块油气田. 2019(03): 385-388 . 百度学术
29. 孔华,兰凯,刘香峰,刘明国,晁文学,郗刘明. 基于振动实测的非均质地层钻头失效分析与对策. 天然气工业. 2019(12): 110-115 . 百度学术
30. 张霞,张涛,李玉梅,黄升. 基于EMD的井下近钻头振动数据分析. 北京信息科技大学学报(自然科学版). 2019(06): 59-63 . 百度学术
31. 黄升,张涛,柳贡慧,李军,张霞. 基于近钻头振动数据分析方法及应用研究. 钻采工艺. 2019(06): 1-4+157 . 百度学术
32. 黄升,张涛,黄崇君,李玉梅,邓虎,张霞. 井下数据获取及粘滑特征分析(英文). 系统仿真学报. 2019(11): 2517-2526 . 百度学术
33. 王超,李军,柳贡慧,张涛,徐小峰. 近钻头井下钻具运动特征及异常状态分析方法. 石油钻探技术. 2018(02): 50-57 . 本站查看
34. 李胜. 超千米深井高地压易变形巷道贯通测量技术研究. 中小企业管理与科技(中旬刊). 2018(01): 169-170 . 百度学术
35. 张奇志,吴永强. 抑制钻柱黏滑振动和钻头反弹的建模与控制. 石油钻采工艺. 2018(05): 553-558+595 . 百度学术
其他类型引用(26)
计量
- 文章访问数: 9041
- HTML全文浏览量: 66
- PDF下载量: 10864
- 被引次数: 61