ZHANG Yanjun, WANG Luyu, LIU Yafei, et al. Advances and challenges of integration of fracturing and enhanced oil recovery in shale oil reservoirs [J]. Petroleum Drilling Techniques,2024, 52(1):84-95. DOI: 10.11911/syztjs.2024012
Citation: ZHANG Yanjun, WANG Luyu, LIU Yafei, et al. Advances and challenges of integration of fracturing and enhanced oil recovery in shale oil reservoirs [J]. Petroleum Drilling Techniques,2024, 52(1):84-95. DOI: 10.11911/syztjs.2024012

Advances and Challenges of Integration of Fracturing and Enhanced Oil Recovery in Shale Oil Reservoirs

More Information
  • Received Date: March 21, 2023
  • Revised Date: January 13, 2024
  • Available Online: January 30, 2024
  • During the process of fracturing development of shale oil reservoirs, fracturing fluids containing various additives are injected into the reservoir at an injection rate that far exceeds the absorption capacity of the formation, basically completing the mission of one-time injection of fracturing media to benefit the entire life of oil well development. Specifically, two issues are particularly critical: 1) How to create a uniformly distributed fracture network, enhance the contact area between fractures and reservoirs, and improve the fluid flow efficiency? 2) On the basis of forming a fracture network for efficient pressure and mass transfer, how can stored fracturing fluid improve the mobility of crude oil in the reservoir? The integration of fracturing and enhanced oil recovery (EOR) is an important way to solve these problems. Therefore, the connotation of shale oil reservoir fracturing and EOR integration technology was described, and the simulation and experimental techniques for achieving fracturing and EOR integration were summarized; the scientific issue of the fracturing and EOR integration of shale oil reservoir was clarified: balanced stress fracturing forms a uniformly distributed fracture network, improves the efficiency of fluid flow and transmission in the uniformly distributed fracture network, and strengthens the utilization of oil and gas in matrix pores. In addition, the challenges facing the fracturing and EOR integration were pointed out, including clarifying the mechanism of interwell interference caused by non-uniform fracture propagation and establishing control methods, forming the way of high-pressure fluid acting on matrix pores in fracture, and revealing the mechanism of fracturing fluid-reservoir-crude oil interaction to improve the mobility of crude oil. The results show that the formation of a uniformly distributed fracture network is the foundation for controlling fracture-matrix pressure and mass transfer, as well as fluid flow. Utilizing crude oil stored in micro and nano pores by strengthening the interaction among fracturing fluid, reservoir, and crude oil is the core. The application of fracturing and EOR integration in shale oil reservoir development is an effective way to achieve economic maximization. It is of great significance for the efficient development of shale oil reservoirs to implement the idea of fracturing and EOR integration.

  • [1]
    金之钧,朱如凯,梁新平,等. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发,2021,48(6):1276–1287.

    JIN Zhijun, ZHU Rukai, LIANG Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(6): 1276–1287.
    [2]
    杨雷,金之钧. 全球页岩油发展及展望[J]. 中国石油勘探,2019,24(5):553–559.

    YANG Lei, JIN Zhijun. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553–559.
    [3]
    邹才能,马锋,潘松圻,等. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展[J]. 地学前缘,2023,30(1):128–142.

    ZOU Caineng, MA Feng, PAN Songqi, et al. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China[J]. Earth Science Frontiers, 2023, 30(1): 128–142.
    [4]
    何文渊,柳波,张金友,等. 松辽盆地古龙页岩油地质特征及关键科学问题探索[J]. 地球科学,2023,48(1):49–62.

    HE Wenyuan, LIU Bo, ZHANG Jinyou, et al. Geological characteristics and key scientific and technological problems of Gulong shale oil in Songliao Basin[J]. Earth Science, 2023, 48(1): 49–62.
    [5]
    张衍君,曾会,陶秀娟,等. 致密储层体积压裂裂缝漏失及控制综述[J]. 科学技术与工程,2022,22(26):11277–11286.

    ZHANG Yanjun, ZENG Hui, TAO Xiujuan, et al. Review of fracturing fluid leakage and prevention during volume fracturing in tight reservoirs[J]. Science Technology and Engineering, 2022, 22(26): 11277–11286.
    [6]
    SHENG J J. Critical review of field EOR projects in shale and tight reservoirs[J]. Journal of Petroleum Science and Engineering, 2017, 159: 654–665. doi: 10.1016/j.petrol.2017.09.022
    [7]
    叶亮,邹雨时,赵倩云,等. 致密砂岩储层CO2压裂裂缝扩展实验研究[J]. 石油钻采工艺,2018,40(3):361–368.

    YE Liang, ZOU Yushi, ZHAO Qianyun, et al. Experiment research on the CO2 fracturing fracture propagation laws of tight sandstone[J]. Oil Drilling & Production Technology, 2018, 40(3): 361–368.
    [8]
    袁士义,王强,李军诗,等. 注气提高采收率技术进展及前景展望[J]. 石油学报,2020,41(12):1623–1632.

    YUAN Shiyi, WANG Qiang, LI Junshi, et al. Technology progress and prospects of enhanced oil recovery by gas injection[J]. Acta Petrolei Sinica, 2020, 41(12): 1623–1632.
    [9]
    ZHANG Yanjun, GE Hongkui, ZHAO Kai, et al. Simulation of pressure response resulted from non-uniform fracture network communication and its application to interwell-fracturing interference in shale oil reservoirs[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(4): 114. doi: 10.1007/s40948-022-00422-1
    [10]
    ALTMAN R, PEDERIVA D, MEHRANFAR R, et al. Understanding production drivers in the Vaca Muerta shale using an integrated reservoir simulation approach[R]. URTEC-2902306-MS, 2018.
    [11]
    赵福豪,黄维安,雍锐,等. 地质工程一体化研究与应用现状[J]. 石油钻采工艺,2021,43(2):131–138.

    ZHAO Fuhao, HUANG Weian, YONG Rui, et al. Research and application status of geology-engineering integration[J]. Oil Drilling & Production Technology, 2021, 43(2): 131–138.
    [12]
    雷群,翁定为,管保山,等. 基于缝控压裂优化设计的致密油储集层改造方法[J]. 石油勘探与开发,2020,47(3):592–599.

    LEI Qun, WENG Dingwei, GUAN Baoshan, et al. A novel approach of tight oil reservoirs stimulation based on fracture controlling optimization and design[J]. Petroleum Exploration and Development, 2020, 47(3): 592–599.
    [13]
    BEHRMANN L A, NOLTE K G. Perforating requirements for fracture stimulations[J]. SPE Drilling & Completion, 1999, 14(4): 228–234.
    [14]
    LEI Xin, ZHANG Shicheng, XU Guoqing, et al. Impact of perforation on hydraulic fracture initiation and extension in tight natural gas reservoirs[J]. Energy Technology, 2015, 3(6): 618–624. doi: 10.1002/ente.201402206
    [15]
    CHUPRAKOV D. Hydraulic fracture crossing or deflection at natural discontinuities[C]//American Geophysical Union, Fall Meeting 2011. Washington, D. C.: American Geophysical Union, 2011: H21B-1086.
    [16]
    DEHGHAN A N, GOSHTASBI K, AHANGARI K, et al. The effect of natural fracture dip and strike on hydraulic fracture propagation[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 210–215. doi: 10.1016/j.ijrmms.2015.02.001
    [17]
    张士诚,郭天魁,周彤,等. 天然页岩压裂裂缝扩展机理试验[J]. 石油学报,2014,35(3):496–503.

    ZHANG Shicheng, GUO Tiankui, ZHOU Tong, et al. Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J]. Acta Petrolei Sinica, 2014, 35(3): 496–503.
    [18]
    侯冰,程万,陈勉,等. 裂缝性页岩储层水力裂缝非平面扩展实验[J]. 天然气工业,2014,34(12):81–86.

    HOU Bing, CHENG Wan, CHEN Mian, et al. Experiments on the non-planar extension of hydraulic fractures in fractured shale gas reservoirs[J]. Natural Gas Industry, 2014, 34(12): 81–86.
    [19]
    郭印同,杨春和,贾长贵,等. 页岩水力压裂物理模拟与裂缝表征方法研究[J]. 岩石力学与工程学报,2014,33(1):52–59.

    GUO Yintong, YANG Chunhe, JIA Changgui, et al. Research on hydraulic fracturing physical simulation of shale and fracture characterization methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 52–59.
    [20]
    KOVSCEK A R, TANG G Q, VEGA B. Experimental investigation of oil recovery from siliceous shale by CO2 injection[R]. SPE 115679, 2008.
    [21]
    ALHARTHY N, TEKLU T, KAZEMI H, et al. Enhanced oil recovery in liquid–rich shale reservoirs: Laboratory to field[J]. SPE Reservoir Evaluation & Engineering, 2018, 21(1): 137–159.
    [22]
    GAMADI T D, SHENG J J, SOLIMAN M Y. An experimental study of cyclic gas injection to improve shale oil recovery[R]. SPE 166334, 2013.
    [23]
    HAWTHORNE S B, GORECKI C D, SORENSEN J A, et al. Hydrocarbon mobilization mechanisms from upper, middle, and Lower Bakken reservoir rocks exposed to CO2[R]. SPE 167200, 2013.
    [24]
    YU Wei, AL-SHALABI E W, SEPEHRNOORI K. A sensitivity study of potential CO2 injection for enhanced gas recovery in Barnett shale reservoirs[R]. SPE 169012, 2014.
    [25]
    ZHANG Yanjun, GE Hongkui, SHEN Yinghao, et al. Evaluating the potential for oil recovery by imbibition and time-delay effect in tight reservoirs during shut-in[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106557. doi: 10.1016/j.petrol.2019.106557
    [26]
    ZHANG Yanjun, GE Hongkui, SHEN Yinghao, et al. The retention and flowback of fracturing fluid of branch fractures in tight reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 198: 108228. doi: 10.1016/j.petrol.2020.108228
    [27]
    LIU Yafei, BLOCK E, SQUIER J, et al. Investigating low salinity waterflooding via glass micromodels with triangular pore-throat architectures[J]. Fuel, 2021, 283: 119264. doi: 10.1016/j.fuel.2020.119264
    [28]
    LIU Yafei, KASZUBA J, OAKEY J. Microfluidic investigations of crude oil-brine interface elasticity modifications via brine chemistry to enhance oil recovery[J]. Fuel, 2019, 239: 338–346. doi: 10.1016/j.fuel.2018.11.040
    [29]
    LI Wen, ZHANG Liyuan, GE Xuehui, et al. Microfluidic fabrication of microparticles for biomedical applications[J]. Chemical Society Reviews, 2018, 47(15): 5646–5683. doi: 10.1039/C7CS00263G
    [30]
    DING Yun, HOWES P D, DEMELLO A J. Recent advances in droplet microfluidics[J]. Analytical Chemistry, 2020, 92(1): 132–149. doi: 10.1021/acs.analchem.9b05047
    [31]
    MATTAX C C, KYTE J R. Ever see a water flood[J]. Oil & Gas Journal, 1961, 59(42): 115–128.
    [32]
    SUN Yu, KHARAGHANI A, TSOTSAS E. Micro-model experiments and pore network simulations of liquid imbibition in porous media[J]. Chemical Engineering Science, 2016, 150: 41–53. doi: 10.1016/j.ces.2016.04.055
    [33]
    NGUYEN P, FADAEI H, SINTON D. Pore-scale assessment of nanoparticle-stabilized CO2 foam for enhanced oil recovery[J]. Energy & Fuels, 2014, 28(10): 6221–6227.
    [34]
    SU Yuliang, ZHANG Xue, LI Lei, et al. Experimental study on microscopic mechanisms and displacement efficiency of N2 flooding in deep-buried clastic reservoirs[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part E): 109789.
    [35]
    GONG Houjian, LI Yajun, DONG Mingzhe, et al. Effect of wettability alteration on enhanced heavy oil recovery by alkaline flooding[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 488: 28–35.
    [36]
    BUCHGRABER M, CLEMENS T, CASTANIER L M, et al. A microvisual study of the displacement of viscous oil by polymer solutions[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(3): 269–280.
    [37]
    YANG Weipeng, LU Jun, WEI Bing, et al. Micromodel studies of surfactant flooding for enhanced oil recovery: a review[J]. ACS Omega, 2021, 6(9): 6064–6069. doi: 10.1021/acsomega.0c05750
    [38]
    YUN W, ROSS C M, ROMAN S, et al. Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media[J]. Lab on a Chip, 2017, 17(8): 1462–1474. doi: 10.1039/C6LC01343K
    [39]
    LIU Yafei, HANSEN A, BLOCK E, et al. Two-phase displacements in microchannels of triangular cross-section[J]. Journal of Colloid and Interface Science, 2017, 507: 234–241. doi: 10.1016/j.jcis.2017.08.006
    [40]
    ALZAHID Y A, MOSTAGHIMI P, GERAMI A, et al. Functionalisation of polydimethylsiloxane (PDMS)- microfluidic devices coated with rock minerals[J]. Scientific Reports, 2018, 8(1): 15518. doi: 10.1038/s41598-018-33495-8
    [41]
    SONG Wen, DE HAAS T W, FADAEI H, et al. Chip-off-the-old-rock: the study of reservoir-relevant geological processes with real-rock micromodels[J]. Lab on a Chip, 2014, 14(22): 4382–4390. doi: 10.1039/C4LC00608A
    [42]
    赵金洲,任岚,蒋廷学,等. 中国页岩气压裂十年:回顾与展望[J]. 天然气工业,2021,41(8):121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012

    ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012
    [43]
    刘传喜,方文超,秦学杰. 非常规油气藏压裂水平井动态缝网模拟方法及应用[J]. 石油与天然气地质,2022,43(3):696–702.

    LIU Chuanxi, FANG Wenchao, QIN Xuejie. Simulation of dynamic fracture network in fractured horizontal well for unconventional reservoirs: Theory and application[J]. Oil & Gas Geology, 2022, 43(3): 696–702.
    [44]
    李传亮,庞彦明,周永炳,等. 地层产生体积压裂缝网的条件分析[J]. 断块油气田,2022,29(1):101–106.

    LI Chuanliang, PANG Yanming, ZHOU Yongbing, et al. Analysis on forming conditions of fracture network in volume fracturing of formation[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 101–106.
    [45]
    翁定为,雷群,李东旭,等. 缝网压裂施工工艺的现场探索[J]. 石油钻采工艺,2013,35(1):59–62.

    WENG Dingwei, LEI Qun, LI Dongxu, et al. Network fracturing field test[J]. Oil Drilling & Production Technology, 2013, 35(1): 59–62.
    [46]
    翁定为,雷群,胥云,等. 缝网压裂技术及其现场应用[J]. 石油学报,2011,32(2):280–284.

    WENG Dingwei, LEI Qun, XU Yun, et al. Network fracturing techniques and its application in the field[J]. Acta Petrolei Sinica, 2011, 32(2): 280–284.
    [47]
    MENG Hu, WANG Xiaoqiong, GE Hongkui, et al. Balanced stress fracturing theory and its application in platform well fracturing during unconventional oil and gas development[J]. Energy Reports, 2022, 8: 10705–10727. doi: 10.1016/j.egyr.2022.08.214
    [48]
    蒋廷学.非常规油气藏新一代体积压裂技术的几个关键问题探讨[J].石油钻探技术,2023,51(4):184-191. doi: 10.11911/syztjs.2023023

    JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reservoirs[J].Petroleum Drilling Techniques, 2023, 51(4):184-191. doi: 10.11911/syztjs.2023023
    [49]
    BEHRMANN L A, ELBEL J L. Effect of perforations on fracture initiation[J]. Journal of Petroleum Technology, 1991, 43(5): 608–615. doi: 10.2118/20661-PA
    [50]
    ZHU H Y, DENG J G, LIU S J, et al. Hydraulic fracturing experiments of highly deviated well with oriented perforation technique[J]. Geomechanics and Engineering, 2014, 6(2): 153–172. doi: 10.12989/gae.2014.6.2.153
    [51]
    HUANG Jian, MA Xiaodan, SAFARI R, et al. Hydraulic fracture design optimization for infill wells: An integrated geomechanics workflow[R]. ARMA-2015-074, 2015.
    [52]
    夏阳,邓英豪,金衍. 裂缝性储层流体流动数值模拟研究进展[J]. 中国科学基金,2021,35(6):964–972.

    XIA Yang, DENG Yinghao, JIN Yan. Advances in numerical simulation of fluid flow in fractured reservoirs[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(6): 964–972.
    [53]
    糜利栋,姜汉桥,李涛,等. 基于离散裂缝模型的页岩气动态特征分析[J]. 中国石油大学学报(自然科学版),2015,39(3):126–131. doi: 10.3969/j.issn.1673-5005.2015.03.017

    MI Lidong, JIANG Hanqiao, LI Tao, et al. Characterization and dynamic analysis of shale gas production based on discrete fracture model[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(3): 126–131. doi: 10.3969/j.issn.1673-5005.2015.03.017
    [54]
    孙静静,黄朝琴,姚军,等. 基于离散裂缝模型的低渗透油藏开发数值模拟[J]. 计算物理,2015,32(2):177–185.

    SUN Jingjing, HUANG Chaoqin, YAO Jun, et al. Numerical simulation of water flooding development in low permeability reservoirs with a discrete fracture model[J]. Chinese Journal of Computational Physics, 2015, 32(2): 177–185.
    [55]
    HOTEIT H, FIROOZABADI A. An efficient numerical model for incompressible two-phase flow in fractured media[J]. Advances in Water Resources, 2008, 31(6): 891–905. doi: 10.1016/j.advwatres.2008.02.004
    [56]
    LIU Lijun, HUANG Zhaoqin, YAO Jun, et al. Simulating two-phase flow and geomechanical deformation in fractured karst reservoirs based on a coupled hydro-mechanical model[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 137: 104543. doi: 10.1016/j.ijrmms.2020.104543
    [57]
    FLEMISCH B, BERRE I, BOON W, et al. Benchmarks for single-phase flow in fractured porous media[J]. Advances in Water Resources, 2018, 111: 239–258. doi: 10.1016/j.advwatres.2017.10.036
    [58]
    王高峰,胡永乐,李治平,等. 油气藏能量方程与一种新的配产理论初探[J]. 西南石油大学学报,2007,29(5):57–59.

    WANG Gaofeng, HU Yongle, LI Zhiping, et al. Oil/gas reservoir energy equation and a new theory of optimal production allocation[J]. Journal of Southwest Petroleum University, 2007, 29(5): 57–59.
    [59]
    王娟. M区块凝析油气藏提高采收率方法研究[D]. 大庆:东北石油大学,2022.

    WANG Juan. Study on EOR method of condensate reservoir in M Block[D]. Daqing: Northeast Petroleum University, 2022.
    [60]
    ZHANG Yanjun, ZOU Yi, ZHANG Yang, et al. Experimental study on characteristics and mechanisms of matrix pressure transmission near the fracture surface during post-fracturing shut-in in tight oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2022, 219: 111133. doi: 10.1016/j.petrol.2022.111133
    [61]
    张衍君,徐树参,刘娅菲,等. 吉木萨尔页岩油压裂开发压后闷井时间优化[J]. 新疆石油天然气,2023,19(1):1–7. doi: 10.12388/j.issn.1673-2677.2023.01.001

    ZHANG Yanjun, XU Shucan, LIU Yafei, et al. Optimization of well shut-in time after fracturing in Jimusar shale oil reservoirs[J]. Xinjiang Oil & Gas, 2023, 19(1): 1–7. doi: 10.12388/j.issn.1673-2677.2023.01.001
    [62]
    葛洪魁,陈玉琨,滕卫卫,等. 吉木萨尔页岩油微观产出机理与提高采收率方法探讨[J]. 新疆石油天然气,2021,17(3):84–90.

    GE Hongkui, CHEN Yukun, TENG Weiwei, et al. Micro-mechanism of production and method of enhanced oil recovery for Jimusar shale oil[J]. Xinjiang Oil & Gas, 2021, 17(3): 84–90.
    [63]
    TIWARI P, DEO M, LIN C L, et al. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT[J]. Fuel, 2013, 107: 547–554. doi: 10.1016/j.fuel.2013.01.006
    [64]
    闫伟超,孙建孟. 微观剩余油研究现状分析[J]. 地球物理学进展,2016,31(5):2198–2211.

    YAN Weichao, SUN Jianmeng. Analysis of research present situation of microscopic remaining oil[J]. Progress in Geophysics, 2016, 31(5): 2198–2211.
    [65]
    范竞存,余昊,陈杰,等. 非常规油气开采中的微纳米力学问题研究进展[J]. 中国科学技术大学学报,2017,47(2):142–154.

    FAN Jingcun, YU Hao, CHEN Jie, et al. Research progress of micro/nano mechanical problems in unconventional oil and gas exploitation[J]. Journal of University of Science and Technology of China, 2017, 47(2): 142–154.
    [66]
    WANG Fengchao, WU Hengan. Enhanced oil droplet detachment from solid surfaces in charged nanoparticle suspensions[J]. Soft Matter, 2013, 9(33): 7974–7980. doi: 10.1039/c3sm51425k
    [67]
    GUO X, WU K, KILLOUGH J, et al. Understanding the mechanism of interwell fracturing interference with reservoir/geomechanics/fracturing modeling in Eagle Ford shale[J]. SPE Reservoir Evaluation & Engineering, 2019, 22(3): 842–860.
    [68]
    RANGRIZ SHOKRI A, CHALATURNYK R J, BEARINGER D. Deployment of pressure hit catalogues to optimize multi-stage hydraulic stimulation treatments and future re-fracturing designs of horizontal wells in Horn River Shale Basin[R]. SPE 196221, 2019.
    [69]
    DANESHY A, AU-YEUNG J, THOMPSON T, et al. Fracture shadowing: A direct method for determination of the reach and propagation pattern of hydraulic fractures in horizontal wells[R]. SPE 151980, 2012.
    [70]
    ANUSARN S, LI Jiawei, WU Kan, et al. Fracture hits analysis for parent-child well development[R]. ARMA-2019-1542, 2019.
    [71]
    PANKAJ P. Decoding positives or negatives of fracture-hits: A geomechanical investigation of fracture-hits and its implications for well productivity and integrity[R]. URTEC-2876100-MS, 2018.
    [72]
    FIALLOS M X, YU Wei, GANJDANESH R, et al. Modeling interwell interference due to complex fracture hits in Eagle Ford using EDFM[R]. IPTC-19468-MS, 2019.
    [73]
    YANG Xi, YU Wei, WU Kan, et al. Assessment of production interference level due to fracture hits using diagnostic charts[J]. SPE Journal, 2020, 25(6): 2837–2852. doi: 10.2118/200485-PA
    [74]
    MANCHANDA R, SHARMA M, RAFIEE M, et al. Overcoming the impact of reservoir depletion to achieve effective parent well refracturing[R]. URTEC-2693373-MS, 2017.
    [75]
    段景杰,姚振杰,黄春霞,等. 特低渗透油藏CO2驱流度控制技术[J]. 断块油气田,2017,24(2):190–193.

    DUAN Jingjie, YAO Zhenjie, HUANG Chunxia, et al. Mobility control technology of CO2 flooding in extra-low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 190–193.
    [76]
    陈涛平,赵斌,贺如. 特低渗透油层CO2与N2驱替方式[J]. 大庆石油地质与开发,2018,37(4):127–132.

    CHEN Taoping, ZHAO Bin, HE Ru. CO2 and N2 flooding methods in ultra-low permeability oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2018, 37(4): 127–132.
    [77]
    WANG Chunpeng, CUI Weixiang, ZHANG Hewen, et al. High efficient imbibition fracturing for tight oil reservoir[R]. SPE 191274, 2018.
    [78]
    FAKCHAROENPHOL P, TORCUK M, KAZEMI H, et al. Effect of shut-in time on gas flow rate in hydraulic fractured shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 109–121. doi: 10.1016/j.jngse.2016.03.068
    [79]
    BOSTROM N, CHERTOV M, PAGELS M, et al. The time-dependent permeability damage caused by fracture fluid[R]. SPE 168140, 2014.
    [80]
    GHANBARI E, DEHGHANPOUR H. The fate of fracturing water: A field and simulation study[J]. Fuel, 2016, 163: 282–294. doi: 10.1016/j.fuel.2015.09.040
    [81]
    ROYCHAUDHURI B, TSOTSIS T T, JESSEN K. An experimental investigation of spontaneous imbibition in gas shales[J]. Journal of Petroleum Science and Engineering, 2013, 111: 87–97. doi: 10.1016/j.petrol.2013.10.002
    [82]
    KEIJZER T J S, LOCH J P G. Chemical osmosis in compacted dredging sludge[J]. Soil Science Society of America Journal, 2001, 65(4): 1045–1055. doi: 10.2136/sssaj2001.6541045x
    [83]
    刘艳红,万文胜,罗鸿成,等. 吉7井区稠油油藏油水自乳化作用及水驱特征[J]. 新疆石油地质,2021,42(6):696–701.

    LIU Yanhong, WAN Wensheng, LUO Hongcheng, et al. Self-emulsification and waterflooding characteristics of heavy oil reservoirs in Well Block Ji-7[J]. Xinjiang Petroleum Geology, 2021, 42(6): 696–701.
  • Cited by

    Periodical cited type(30)

    1. 许朝辉,查春青,范进朝,张谧. 复合脉冲钻井提速工具的设计及试验分析. 石油矿场机械. 2025(01): 1-5 .
    2. 陈东方,全兵,肖新启,张光宇,陈志华. 轴扭耦合冲击器结构设计与室内试验. 石油钻探技术. 2024(01): 78-83 . 本站查看
    3. 刘义彬,黄峰,康建涛,周灏,季小娜,左岳. 近钻头旋扭冲击器结构设计与试验. 石油矿场机械. 2023(02): 28-33 .
    4. 叶道辉,陈东方,肖平,张锐尧,张光宇,秦菲. 同频异位式复合冲击器的研究开发与现场试验. 石油机械. 2023(06): 20-26 .
    5. 秦承帅,孙洪斌,李利平,刘学港,刘知辉,冯春,孙子正. 复合冲击作用下PDC钻齿破岩过程连续-非连续数值模拟研究. 煤田地质与勘探. 2023(09): 109-120 .
    6. 赵金成,陈杰,陈立伟,刘禹铭,柴龙顺,蒋畅. 国内外扭力冲击器的研究现状及展望. 机械工程师. 2022(05): 83-85 .
    7. 毛良杰,马茂原,刘立鹏,张伟,陈春宇. 扭力冲击器对钻柱黏滑振动的影响分析. 断块油气田. 2022(04): 545-551 .
    8. 王建云,韩涛,赵宽心,张立军,席宝滨,叶翔. 塔深5井超深层钻井关键技术. 石油钻探技术. 2022(05): 27-33 . 本站查看
    9. 王建龙,柳鹤,于琛,郑锋,李亚锋,刘烁. 多功能振荡旋冲螺杆钻具研制与应用. 西部探矿工程. 2022(12): 49-52+55 .
    10. 赵建军,赵晨熙,崔晓杰,胡群爱. 减震稳扭旋冲钻井提速工具可变节流口特性分析. 机械科学与技术. 2021(04): 592-597 .
    11. 陈小元,严忠. 许X36A下扬子中深探井钻井施工技术. 复杂油气藏. 2021(01): 85-89+101 .
    12. 车继勇,谯正武,李明娜. 井下冲击钻井工具模拟试验装置研制. 石油矿场机械. 2021(03): 80-86 .
    13. 苏崭,王博,盖京明,李玮,赵欢,陈冰邓. 复合式扭力冲击器在坚硬地层中的应用. 中国煤炭地质. 2021(05): 47-50+57 .
    14. 赵建军,崔晓杰,曹海涛,赵晨熙. 高频液力扭转冲击钻井提速工具设计与分析. 机床与液压. 2021(14): 84-88 .
    15. 陈新勇,付潇,李亮亮,王颖瑞,李毅,吴红玲,张明. 廊固凹陷安探地区复杂深井钻井关键技术. 石油机械. 2021(12): 36-41 .
    16. 熊振宇,田壮壮,何阳子,崔强. 复合冲击器在西湖凹陷深部地层钻井中的应用. 海洋石油. 2021(04): 85-89 .
    17. 左宏刚,何福耀,严维锋,和鹏飞,张子明. 超深大位移井井筒清洁技术及工程实践. 石油化工应用. 2020(02): 92-97 .
    18. 陈新勇,韩煦,邱爱民,王秀影,梁晓勇,付凯,黄红亮. 扭力冲击器与螺杆钻具集成BHA应用研究. 石油机械. 2020(05): 34-38 .
    19. 刘伟吉,曾义金,祝效华,丁士东. 单齿复合冲击切削破岩机制及其与扭转冲击的对比. 中国石油大学学报(自然科学版). 2020(03): 74-80 .
    20. 罗恒荣,崔晓杰,谭勇,黎有炎,赵建军. 液力扭转冲击器配合液力加压器的钻井提速技术研究与现场试验. 石油钻探技术. 2020(03): 58-62 . 本站查看
    21. 刘书斌,倪红坚,张恒,李宁. 多维冲击器钻井提速技术及应用. 石油机械. 2020(10): 44-50 .
    22. 韩飞,罗淮东,张全立,张林,王军,李庆. 扭力冲击器设计与仿真分析. 石油机械. 2019(03): 19-23 .
    23. 戴杰,冮鹏. 旋冲钻具技术特点与原理分析. 化工管理. 2019(09): 108-109 .
    24. 胡群爱,孙连忠,张进双,张俊,刘仕银. 硬地层稳压稳扭钻井提速技术. 石油钻探技术. 2019(03): 107-112 . 本站查看
    25. 李相勇. 复合冲击钻井工具在深部难钻地层的应用. 西部探矿工程. 2019(08): 70-72 .
    26. 赵建军,崔晓杰,赵晨熙,胡亮,尹慧博,马兰荣. 高频液力扭力冲击器设计与试验研究. 石油化工应用. 2018(02): 5-10 .
    27. 黄家根,汪海阁,纪国栋,赵飞,明瑞卿,郝亚龙. 超声波高频旋冲钻井技术破岩机理研究. 石油钻探技术. 2018(04): 23-29 . 本站查看
    28. 陈新勇,张苏,付潇,邱晓宁,马谢书,杨恺. 扭力冲击钻井工具模拟分析及现场试验. 石油机械. 2018(09): 29-32 .
    29. 梁奇敏,何俊才,张弘,张翼,刘新云. 钻井提速工具经济性预测评价方法. 石油钻探技术. 2017(03): 57-61 . 本站查看
    30. 闫炎,管志川,玄令超,呼怀刚,庄立. 复合冲击条件下PDC钻头破岩效率试验研究. 石油钻探技术. 2017(06): 24-30 . 本站查看

    Other cited types(17)

Catalog

    Article Metrics

    Article views (329) PDF downloads (118) Cited by(47)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return