CHEN Dongfang, QUAN Bing, XIAO Xinqi, et al. Structure design and laboratory testings of an axial & torsional coupling impactor [J]. Petroleum Drilling Techniques,2024, 52(1):78-83. DOI: 10.11911/syztjs.2023104
Citation: CHEN Dongfang, QUAN Bing, XIAO Xinqi, et al. Structure design and laboratory testings of an axial & torsional coupling impactor [J]. Petroleum Drilling Techniques,2024, 52(1):78-83. DOI: 10.11911/syztjs.2023104

Structure Design and Laboratory Testings of an Axial & Torsional Coupling Impactor

More Information
  • Received Date: December 21, 2022
  • Revised Date: October 22, 2023
  • Available Online: November 15, 2023
  • To improve the penetration depth of cutters on polycrystalline diamond compact (PDC) bits in hard formations and eliminate the harm caused by torsional vibration, a hydraulic pulse-type axial impact assembly was added based on the structure of the self-excited reversing torsional impact assembly. A new type of axial & torsional coupling impactor was designed by using the fork in the torsional impact assembly to drive the dynamic disc-type valve in the axial impact assembly to rotate synchronously, causing periodic changes in the flow area and generating hydraulic pulse-type axial impact load, which forms axial & torsional coupling impact together with the torsional impact load. The impactor had the characteristics of simple structure with the same impact frequency. In addition, a mathematical model of impactor performance parameters was established based on law of conservation of energy. Laboratory experiments on performance parameters of the axial & torsional coupling impactor were conducted. The results showed that the pressure drop and the axial impact load of the impactor were proportional to the square of the flow rate, and the torsional impact load and impact frequency were linearly increased with the flow rate. The maximum relative error was only 7.91%, which verified the accuracy of the mathematical model. This study provides theoretical guidance for the development of similar impact drilling tools.

  • [1]
    温春明,吴家坤,孙新浩. 多维冲击器在北疆深部硬岩地层钻井提速中的应用[J]. 工程技术研究,2022,7(11):104–106.

    WEN Chunming, WU Jiakun, SUN Xinhao. Application of multi-dimensional impactor in drilling speed increase in deep hard rock formation in northern Xinjiang[J]. Engineering and Technological Research, 2022, 7(11): 104–106.
    [2]
    田家林,胡志超,张昕,等. 纵扭复合冲击工具动力学特性研究[J]. 机械工程学报,2022,58(7):141–151. doi: 10.3901/JME.2022.07.141

    TIAN Jialin, HU Zhichao, ZHANG Xin, et al. Study on dynamic characteristics of longitudinal torsional composite impactor[J]. Journal of Mechanical Engineering, 2022, 58(7): 141–151. doi: 10.3901/JME.2022.07.141
    [3]
    熊振宇,田壮壮,何阳子,等. 复合冲击器在西湖凹陷深部地层钻井中的应用[J]. 海洋石油,2021,41(4):85–89.

    XIONG Zhenyu, TIAN Zhuangzhuang, HE Yangzi, et al. Application of hybrid percussion generator in deep formation drilling in Xihu Sag[J]. Offshore Oil, 2021, 41(4): 85–89.
    [4]
    穆总结,李根生,黄中伟,等. 振动冲击钻井提速技术现状及发展趋势[J]. 石油钻采工艺,2020,42(3):253–260.

    MU Zongjie, LI Gensheng, HUANG Zhongwei, et al. Status and development trend of vibration-impact ROP improvement technologies[J]. Oil Drilling & Production Technology, 2020, 42(3): 253–260.
    [5]
    DEPOUHON A, DETOURNAY E. Instability regimes and self-excited vibrations in deep drilling systems[J]. Journal of Sound and Vibration, 2014, 333(7): 2019–2039. doi: 10.1016/j.jsv.2013.10.005
    [6]
    查春青,柳贡慧,李军,等. 复合冲击钻具的研制及现场试验[J]. 石油钻探技术,2017,45(1):57–61.

    ZHA Chunqing, LIU Gonghui, LI Jun, et al. Development and field application of a compound percussive jet[J]. Petroleum Drilling Techniques, 2017, 45(1): 57–61.
    [7]
    玄令超,管志川,呼怀刚,等. 旋转冲击破岩实验装置的设计与应用[J]. 石油钻采工艺,2016,38(1):48–52.

    XUAN Lingchao, GUAN Zhichuan, HU Huaigang, et al. Design and application of experimental apparatus for rock breaking by rotary percussion[J]. Oil Drilling & Production Technology, 2016, 38(1): 48–52.
    [8]
    陈勇,吴仲华,聂云飞,等. 应用于螺杆钻具的轴向振动冲击装置研制[J]. 石油钻采工艺,2017,39(2):212–217.

    CHEN Yong, WU Zhonghua, NIE Yunfei, et al. Development of axial vibration impact device used for screw drill[J]. Oil Drilling & Production Technology, 2017, 39(2): 212–217.
    [9]
    董学成. 振荡冲击器研究与应用[D]. 成都: 西南石油大学, 2015.

    DONG Xuecheng. Research and application of oscillation impacter[D]. Chengdu: Southwest Petroleum University, 2015.
    [10]
    张海平. 井下动力驱动的旋冲钻井工具设计计算与试验[J]. 机械设计与研究,2020,36(1):202–205.

    ZHANG Haiping. Design calculation and experimental study on downhole motor driven rotary percussion drilling tool[J]. Machine Design & Research, 2020, 36(1): 202–205.
    [11]
    STAYSKO R, FRANCIS B, COTE B. Fluid hammer drives down well costs[R]. SPE 139926, 2011.
    [12]
    邓勇. 冲击载荷下深层致密砂岩破岩机理研究[D]. 北京: 中国石油大学(北京), 2017.

    DENG Yong. The research on rock fragmentation mechanism of deep tight sandstone under impact load[D]. Beijing: China University of Petroleum(Beijing), 2017.
    [13]
    李国华,鲍洪志,陶兴华. 旋冲钻井参数对破岩效率的影响研究[J]. 石油钻探技术,2004,32(2):4–7.

    LI Guohua, BAO Hongzhi, TAO Xinghua. Effects of drilling conditions on crushing rocks while rotary percussion drilling[J]. Petroleum Drilling Techniques, 2004, 32(2): 4–7.
    [14]
    方良. 扭力冲击器的结构设计与实验研究[D]. 乌鲁木齐: 新疆大学, 2018.

    FANG Liang. Structure design and experiment study of torsion shock[D]. Urumqi: Xinjiang University, 2018.
    [15]
    李思琪,闫铁,李玮,等. PDC钻头扭转冲击破岩机理及试验分析[J]. 长江大学学报(自科版),2015,12(2):48–51.

    LI Siqi, YAN Tie, LI Wei, et al. Torsional impact rock breaking mechanism of PDC bits and their experimental analysis[J]. Journal of Yangtze University(Natural Science Edition), 2015, 12(2): 48–51.
    [16]
    祝效华,汤历平,童华. 高频扭转冲击钻进的减振与提速机理研究[J]. 振动与冲击,2012,31(20):75–78.

    ZHU Xiaohua, TANG Liping, TONG Hua. Rock breaking mechanism of a high frequency torsional impact drilling[J]. Journal of Vibration and Shock, 2012, 31(20): 75–78.
    [17]
    DEEN A, WEDEL R, NAYAN A, et al. Application of a torsional impact hammer to improve drilling efficiency[R]. SPE 147193, 2011.
    [18]
    祝效华,汤历平,孟苹苹,等. PDC钻头粘滑振动机理分析[J]. 石油矿场机械,2012,41(4):13–16.

    ZHU Xiaohua, TANG Liping, MENG Pingping, et al. Stick-slip vibration mechanism analysis of PDC bit[J]. Oil Field Equipment, 2012, 41(4): 13–16.
    [19]
    汤历平. 钻柱粘滑振动特性及扭转冲击抑制粘滑机理研究[D]. 成都: 西南石油大学, 2015.

    TANG Liping. Research on stick-slip vibration characteristics of drillstring and mechanism of torsional impacts mitigate stick-slip vibration[D]. Chengdu: Southwest Petroleum University, 2015.
    [20]
    闫炎,管志川,玄令超,等. 复合冲击条件下PDC钻头破岩效率试验研究[J]. 石油钻探技术,2017,45(6):24–30.

    YAN Yan, GUAN Zhichuan, XUAN Lingchao, et al. Experimental study on rock breaking efficiency with a PDC bit under conditions of composite percussion[J]. Petroleum Drilling Techniques, 2017, 45(6): 24–30.
    [21]
    李玉梅,张涛,苏中,等. 复合冲击频率配合特性模拟研究[J]. 石油机械,2019,47(9):30–36.

    LI Yumei, ZHANG Tao, SU Zhong, et al. Simulation study on compound percussion frequency matching characteristics[J]. China Petroleum Machinery, 2019, 47(9): 30–36.
    [22]
    刘伟吉,曾义金,祝效华,等. 单齿复合冲击切削破岩机制及其与扭转冲击的对比[J]. 中国石油大学学报(自然科学版),2020,44(3):74–80.

    LIU Weiji, ZENG Yijin, ZHU Xiaohua, et al. Mechanism of rock breaking under composite and torsional impact cutting[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(3): 74–80.
  • Related Articles

    [1]YU Haitang, DING Yi, LIU Yanmei, PENG Miao, LIANG Lixi, YU Xiaolong. A Dynamical Spontaneous Imbibition Model for ShaleConsidering Hydration Damage[J]. Petroleum Drilling Techniques, 2023, 51(5): 139-148. DOI: 10.11911/syztjs.2023054
    [2]WANG Tao, LI Yao, HE Hui. A Coupling Allocation Model of Finely Layered Water Injection Considering Pressure Constraint[J]. Petroleum Drilling Techniques, 2023, 51(2): 95-101. DOI: 10.11911/syztjs.2023012
    [3]YU Yi, WANG Xuerui, KE Ke, WANG Di, YU Xin, GAO Yonghai. Prediction Model and Distribution Law Study of Temperature and Pressure of the Wellbore in drilling in Arctic Region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11-20. DOI: 10.11911/syztjs.2021047
    [4]XU Jianning, ZHENG Shunze, LI Zhongwen, XI Wenkui, WEI Yaming, YANG Xudong. Performance Analysis and Optimization of the Anchor Mechanism of Coupling Anchor Type Downhole Throttle[J]. Petroleum Drilling Techniques, 2018, 46(2): 103-108. DOI: 10.11911/syztjs.2018053
    [5]DENG Yong, CHEN Mian, JIN Yan, LU Yunhu, ZOU Daiwu. Prediction Model and Numerical Simulation for Rock Fissure Length under Impact Load[J]. Petroleum Drilling Techniques, 2016, 44(4): 41-46. DOI: 10.11911/syztjs.201604008
    [6]Ma Shuai, Zhang Fengbo, Hong Chuqiao, Liu Shuangqi, Zhong Jiajun, Wang Shichao. Development and Solution to the Coupling Model of the Productivity of Interbeded Reserviors in Stepped Horizontal Wells[J]. Petroleum Drilling Techniques, 2015, 43(5): 94-99. DOI: 10.11911/syztjs.201505016
    [7]He Miao, Liu Gonghui, Li Jun, Li Mengbo, Zha Chunqing, Li Gen. Solution and Analysis of Fully Transient Temperature and Pressure Coupling Model for Multiphase Flow[J]. Petroleum Drilling Techniques, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005
    [8]Chen Xuyue, Fan Honghai, Ji Rongyi, Li Chaowei, Wang Yunlong. Four-Parameter Rheological Model and Its Application in Cementing Slurry[J]. Petroleum Drilling Techniques, 2013, 41(5): 76-81. DOI: 10.3969/j.issn.1001-0890.2013.05.015
    [9]Wu Shinan, Zhang Jinlong, Ding Shidong, Liu Jian. Revision of Mathematical Model of Foamed Cement Slurry Density under Down-Hole Conditions[J]. Petroleum Drilling Techniques, 2013, 41(2): 28-33. DOI: 10.3969/j.issn.1001-0890.2013.02.006
    [10]Liang Erguo, Li Zifeng, Zhao Jinhai. Model for Collapsing Strength Calculation of Worn Casing[J]. Petroleum Drilling Techniques, 2012, 40(2): 41-45. DOI: 10.3969/j.issn.1001-0890.2012.02.008

Catalog

    Article Metrics

    Article views (140) PDF downloads (72) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return