XIAO Lizhi, LUO Sihui, LONG Zhihao. The course of development and the future of wellsite NMR technologies and their applications [J]. Petroleum Drilling Techniques,2023, 51(4):140-148. DOI: 10.11911/syztjs.2023034
Citation: XIAO Lizhi, LUO Sihui, LONG Zhihao. The course of development and the future of wellsite NMR technologies and their applications [J]. Petroleum Drilling Techniques,2023, 51(4):140-148. DOI: 10.11911/syztjs.2023034

The Course of Development and the Future of Wellsite NMR Technologies and Their Applications

More Information
  • Received Date: January 30, 2023
  • Revised Date: February 27, 2023
  • Available Online: March 06, 2023
  • Wellsite nuclear magnetic resonance (NMR) technologies have developed rapidly in the past 20 years and have played an important role in oil and gas drilling and exploitation. They refer to the NMR measurement, analysis, and application carried out in complex and harsh environments of oil and gas drilling sites, which involve multiple aspects such as basic theory, measurement instruments, data acquisition and processing, and interpretation and application. In the past decades, Chinese scientists and researchers have made continuous efforts to tackle the challenges, going through the development course of “introduction, absorption, integrated innovation, and initial innovation.” As a result, the NMR measurement and analysis technologies suitable for continental oil and gas are developed and industrial applications are achieved, and rich technical reserves are formed in several novel and forward-looking fields. This paper systematically summarized the development course of wellsite NMR theory, methods, instruments, and technologies in and outside China as well as the key breakthroughs in these aspects. On this basis, it gave the application prospects and challenges of wellsite NMR technologies in the exploration and development of complex oil and gas and shale oil and gas. The research is expected to promote the exploration and development level and progress of shale oil and gas and deep complex oil and gas in China.

  • [1]
    BLOCH F. Nuclear induction[J]. Physical Review, 1946, 70(7/8): 460–474.
    [2]
    PURCELL E M, TORREY H C, POUND R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Physical Review, 1946, 69(1/2): 37–38.
    [3]
    PACKARD M, VARIAN R. Free nuclear induction in the earth’s magnetic field[J]. Physical Review, 1954, 93: 941.
    [4]
    BROWN R J S, FATT I. Measurements of fractional wettability of oil fields’ rocks by the nuclear magnetic relaxation method[R]. SPE 743, 1956.
    [5]
    BROWN R J S, GAMSON B W. Nuclear magnetism logging[J]. Journal of Petroleum Technology, 1960, 219(1): 201–209.
    [6]
    SEEVERS D P. A nuclear magnetic method for determining the permeability of sandstones[R]. SPWLA-1966-L, 1966.
    [7]
    ERNST R R, ANDERSON W A. Application of Fourier transform spectroscopy to magnetic resonance[J]. Review of Scientific Instruments, 1966, 37(1): 93–102. doi: 10.1063/1.1719961
    [8]
    TIMUR A. An investigation of permeability, porosity, and residual water saturation relationships[R]. SPWLA-1968-J, 1968.
    [9]
    LAUTERBUR P C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance[J]. Nature, 1973, 242(5394): 190–191. doi: 10.1038/242190a0
    [10]
    AUE W P, BARTHOLDI E, ERNST R R. Two-dimensional spectroscopy. Application to nuclear magnetic resonance[J]. The Journal of Chemical Physics, 1976, 64(5): 2229–2246. doi: 10.1063/1.432450
    [11]
    WÜTHRICH K. NMR in biological research: peptides and proteins[M]. Amsterdam: North-Holland Publishing Company, 1976: 355.
    [12]
    BROWNSTEIN K R, TARR C E. Importance of classical diffusion in NMR studies of water in biological cells[J]. Physics Review A, 1979, 19(6): 2446–2453. doi: 10.1103/PhysRevA.19.2446
    [13]
    JACKSON J A, BURNETT L J, HARMON J F. Remote (inside-out) NMR. III. detection of nuclear magnetic resonance in a remotely produced region of homogeneous magnetic field[J]. Journal of Magnetic Resonance (1969), 1980, 41(3): 411–421.
    [14]
    TAICHER Z, SHTRIKMAN S, PALTIEL Z, et al. Nuclear magnetic resonance sensing apparatus and techniques: US4717877[P]. 1988-01-05.
    [15]
    KLEINBERG R L, SEZGINER A, GRIFFIN D D, et al. Novel NMR apparatus for investigating an external sample[J]. Journal of Magnetic Resonance (1969), 1992, 97(3): 466–485.
    [16]
    CHANDLER R N, DRACK E O, MILLER M N, et al. Improved log quality with a dual-frequency pulsed NMR tool[R]. SPE 28365, 1994.
    [17]
    PRAMMER M G, DRACK E D, BOUTON J C, et al. Measurements of clay-bound water and total porosity by magnetic resonance logging[R]. SPE 36522, 1996.
    [18]
    PRAMMER M G, BOUTON J, CHANDLER R N, et al. A new multiband generation of NMR logging tools[R]. SPE 49011, 1998.
    [19]
    COATES G R, XIAO Lizhi, PRAMMER M G. NMR logging: Principles and applications[M]. Houston: Gulf Publishing Company, 1999: 234.
    [20]
    VENKATARAMANAN L, SONG Yiqiao, HURLIMANN M D. Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions[J]. IEEE Transactions on Signal Processing, 2002, 50(5): 1017–1026. doi: 10.1109/78.995059
    [21]
    SONG Y Q, VENKATARAMANAN L, HÜRLIMANN M D, et al. T1-T2 correlation spectra obtained using a fast two-dimensional Laplace inversion[J]. Journal of Magnetic Resonance, 2002, 154(2): 261–268. doi: 10.1006/jmre.2001.2474
    [22]
    BORGHI M, PORRERA F, LYNE A, et al. Magnetic resonance logging while drilling streamlines reservoir evaluation[R]. SPWLA-2005-HHH, 2005.
    [23]
    HEIDLER R, MORRISS C, HOSHUN R. Design and implementation of a new magnetic resonance tool for the while drilling environment[R]. SPWLA-2003-BBB, 2003.
    [24]
    DRACK E D, PRAMMER M G, ZANNONI S, et al. Advances in LWD nuclear magnetic resonance[R]. SPE 71730, 2001.
    [25]
    PRAMMER M G, BOUTON J, MASAK P. The downhole NMR fluid analyzer[R]. SPWLA-2001-N, 2001.
    [26]
    阿克谢利罗德. 核磁测井[M]. 梅忠武, 译. 北京: 石油工业出版社, 1982: 134.

    АКСЕЛВРОД С М. Nuclear magnetic resonance logging[M]. MEI Zhongwu, translated. Beijing: Petroleum Industry Press, 1982: 134.
    [27]
    肖立志, 谢红. 核磁共振方法确定岩样孔隙度//首届全国岩石与矿物物理性质学术讨论会[C]. 上海, 1982.

    XIAO Lizhi, XIE Hong. Determining the porosity of rock by NMR method//National Symposium on Physical Properties of Rocks and Minerals[C]. Shanghai, 1982.
    [28]
    肖立志. 磁共振成象测井提供的基本信息及其应用[J]. 测井技术,1997,21(2):79–89.

    XIAO Lizhi. Basic information provided by MRIL and typical field examples[J]. Well Logging Technology, 1997, 21(2): 79–89.
    [29]
    肖立志,石红兵. 低场核磁共振岩心分析及其在测井解释中的应用[J]. 测井技术,1998,22(1):42–49.

    XIAO Lizhi, SHI Hongbing. Low field NMR core analysis and its applications in log analysis[J]. Well Logging Technology, 1998, 22(1): 42–49.
    [30]
    肖立志. 核磁共振成像测井与岩石核磁共振及其应用[M]. 北京: 科学出版社, 1998: 328.

    XIAO Lizhi. Magnetic resonance imaging logging, rock magnetic resonance and its applications[M]. Beijing: Science Press, 1998: 328.
    [31]
    DU Qunjie, XIAO Lizhi, ZHANG Yan, et al. A novel two-dimensional NMR relaxometry pulse sequence for petrophysical characterization of shale at low field[J]. Journal of Magnetic Resonance, 2020, 310: 106643. doi: 10.1016/j.jmr.2019.106643
    [32]
    XIAO Lizhi, LI Kui. Characteristics of the nuclear magnetic resonance logging response in fracture oil and gas reservoirs[J]. New Journal of Physics, 2011, 13: 045003. doi: 10.1088/1367-2630/13/4/045003
    [33]
    郭江峰,徐陈昱,谢然红,等. 含微裂缝致密砂岩核磁共振响应机理研究[J]. 石油钻探技术,2022,50(4):121–128.

    GUO Jiangfeng, XU Chenyu, XIE Ranhong, et al. Study on the NMR response mechanism of micro-fractured tight sandstones[J]. Petroleum Drilling Techniques, 2022, 50(4): 121–128.
    [34]
    刘双惠,肖立志,胡法龙,等. 核磁共振测井地层界面响应特征研究[J]. 地球物理学报,2008,51(4):1262–1269.

    LIU Shuanghui, XIAO Lizhi, HU Falong, et al. Studies on NMR logging responses at formation boundary[J]. Chinese Journal of Geophysics, 2008, 51(4): 1262–1269.
    [35]
    李新, 肖立志. 天然气水合物的地球物理特征与测井评价[M]. 北京: 石油工业出版社, 2013: 136.

    LI Xin, XIAO Lizhi. Natural gas hydrates geophysical characteristics and well logging evaluation[M]. Beijing: Petroleum Industry Press, 2013: 136.
    [36]
    刘堂宴,马在田,傅容珊. 核磁共振谱的岩石孔喉结构分析[J]. 地球物理学进展,2003,18(4):737–742.

    LIU Tangyan, MA Zaitian, FU Rongshan. Analysis of rock pore structure with NMR spectra[J]. Progress in Geophysics, 2003, 18(4): 737–742.
    [37]
    王筱文,肖立志,谢然红,等. 中国陆相地层核磁共振孔隙度研究[J]. 中国科学G辑:物理学、力学、天文学,2006,36(4):366–374.

    WANG Xiaowen, XIAO Lizhi, XIE Ranhong, et al. NMR porosity study of continental formation in China[J]. Science in China(Series G: Physics, Mechanics & Astronomy), 2006, 36(4): 366–374.
    [38]
    WANG Jie, XIAO Lizhi, LIAO Guangzhi, et al. Theoretical investigation of heterogeneous wettability in porous media using NMR[J]. Scientific Reports, 2018, 8(1): 13450. doi: 10.1038/s41598-018-31803-w
    [39]
    WANG Jie, XIAO Lizhi, LIAO Guangzhi, et al. NMR characterizing mixed wettability under intermediate-wet condition[J]. Magnetic Resonance Imaging, 2019, 56: 156–160. doi: 10.1016/j.mri.2018.09.023
    [40]
    LIANG Can, XIAO Lizhi, ZHOU Cancan, et al. Wettability characterization of low-permeability reservoirs using nuclear magnetic resonance: an experimental study[J]. Journal of Petroleum Science and Engineering, 2019, 178: 121–132. doi: 10.1016/j.petrol.2019.03.014
    [41]
    LIANG Can, XIAO Lizhi, ZHOU Cancan, et al. Two-dimensional nuclear magnetic resonance method for wettability determination of tight sand[J]. Magnetic Resonance Imaging, 2019, 56: 144–150. doi: 10.1016/j.mri.2018.09.020
    [42]
    WANG Lin, XIAO Lizhi, YUE Wenzheng. NMR characterization of pore structure and connectivity for nano-self-assembly γ-Al2O3 and precursor[J]. Applied Magnetic Resonance, 2018, 49(10): 1099–1118. doi: 10.1007/s00723-018-1029-7
    [43]
    WANG Lin, XIAO Lizhi, ZHANG Yan, et al. An improved NMR permeability model for macromolecules flowing in porous medium[J]. Applied Magnetic Resonance, 2019, 50(9): 1099–1123. doi: 10.1007/s00723-019-01140-w
    [44]
    何雨丹,毛志强,肖立志,等. 利用核磁共振T2分布构造毛管压力曲线的新方法[J]. 吉林大学学报(地球科学版),2005,35(2):177–181.

    HE Yudan, MAO Zhiqiang, XIAO Lizhi, et al. A new method to obtain capillary pressure curve using NMR T2 distribution[J]. Journal of Jilin University(Earth Science Edition), 2005, 35(2): 177–181.
    [45]
    何雨丹,毛志强,肖立志,等. 核磁共振T2分布评价岩石孔径分布的改进方法[J]. 地球物理学报,2005,48(2):373–378.

    HE Yudan, MAO Zhiqiang, XIAO Lizhi, et al. An improved method of using NMR T2 distribution to evaluate pore size distri-bution[J]. Chinese Journal of Geophysics, 2005, 48(2): 373–378.
    [46]
    JIA Zijian, XIAO Lizhi, CHEN Zhong, et al. Determining shale organic porosity and total organic carbon by combining spin echo, solid echo and magic echo[J]. Microporous and Mesoporous Materials, 2018, 269: 12–16. doi: 10.1016/j.micromeso.2017.11.049
    [47]
    田志. 多尺度孔隙岩石的核磁共振扩散耦合现象及其探测方法[J]. 地球物理学报,2021,64(3):1119–1130.

    TIAN Zhi. NMR diffusional coupling of multiple-scale porous rock and its detection[J]. Chinese Journal of Geophysics, 2021, 64(3): 1119–1130.
    [48]
    田志,肖立志,廖广志,等. 基于沉积过程的数字岩石建模方法研究[J]. 地球物理学报,2019,62(1):248–259.

    TIAN Zhi, XIAO Lizhi, LIAO Guangzhi, et al. Study on digital rock reconstruction method based on sedimentological process[J]. Chi-nese Journal of Geophysics, 2019, 62(1): 248–259.
    [49]
    成家杰,肖立志,许巍,等. 基于岩石重构图像的核磁共振响应模拟[J]. 波谱学杂志,2013,30(3):336–344.

    CHENG Jiajie, XIAO Lizhi, XU Wei, et al. Simulating NMR responses in porous media based on reconstructed digital rock image[J]. Chinese Journal of Magnetic Resonance, 2013, 30(3): 336–344.
    [50]
    张宗富,肖立志,刘化冰,等. 水分子在微孔隙介质中的受限扩散模拟[J]. 波谱学杂志,2014,31(1):49–60.

    ZHANG Zongfu, XIAO Lizhi, LIU Huabing, et al. Simulation of restricted diffusion of water molecules in micropores[J]. Chinese Journal of Magnetic Resonance, 2014, 31(1): 49–60.
    [51]
    AN Tianlin, XIAO Lizhi, LI Xin, et al. Investigation of the correlation between internal gradients and dephasing effect in inhomogeneous field[J]. Science China: Physics, Mechanics & Astronomy, 2014, 57(9): 1676–1683.
    [52]
    XIAO Lizhi, WANG Zhongdong, LIU Tangyan. Application of multi-exponential inversion method to NMR measurements[J]. Petroleum Science, 2004, 1(1): 19–22.
    [53]
    王忠东,肖立志,刘堂宴. 核磁共振弛豫信号多指数反演新方法及其应用[J]. 中国科学G辑:物理学、力学、天文学,2003,33(4):323–332.

    WANG Zhongdong, XIAO Lizhi, LIU Tangyan. A new multi-exponential NMR inversion method and its application[J]. Science in China(Series G:Physics, Mechanics & Astronomy), 2003, 33(4): 323–332.
    [54]
    廖广志,肖立志,谢然红,等. 孔隙介质核磁共振弛豫测量多指数反演影响因素研究[J]. 地球物理学报,2007,50(3):932–938.

    LIAO Guangzhi, XIAO Lizhi, XIE Ranhong, et al. Influence factors of multi-exponential inversion of NMR relaxation measurement in porous media[J]. Chinese Journal of Geophysics, 2007, 50(3): 932–938.
    [55]
    谢然红,肖立志,邓克俊,等. 二维核磁共振测井[J]. 测井技术,2005,29(5):430–434.

    XIE Ranhong, XIAO Lizhi, DENG Kejun, et al. Two-dimensional NMR logging[J]. Well Logging Technology, 2005, 29(5): 430–434.
    [56]
    谢然红,肖立志,陆大卫. 识别储层流体的(T2, T1)二维核磁共振方法[J]. 测井技术,2009,33(1):26–31.

    XIE Ranhong, XIAO Lizhi, LU Dawei. (T2, T1) Two-dimensional NMR method for fluid typing[J]. Well Logging Technology, 2009, 33(1): 26–31.
    [57]
    谢然红,肖立志. 核磁共振测井探测岩石内部磁场梯度的方法[J]. 地球物理学报,2009,52(5):1341–1347.

    XIE Ranhong, XIAO Lizhi. NMR logging probing the internal magnetic field gradients of rocks[J]. Chinese Journal of Geophysics, 2009, 52(5): 1341–1347.
    [58]
    谢然红,肖立志. (T2, D)二维核磁共振测井识别储层流体的方法[J]. 地球物理学报,2009,52(9):2410–2418.

    XIE Ranhong, XIAO Lizhi. The (T2, D) NMR logging method for fluids characterization[J]. Chinese Journal of Geophysics, 2009, 52(9): 2410–2418.
    [59]
    ZHANG Zongfu, XIAO Lizhi, LIAO Guangzhi, et al. Evaluation of the fast inverse Laplace transform for three-dimensional NMR distribution functions[J]. Applied Magnetic Resonance, 2013, 44(11): 1335–1343. doi: 10.1007/s00723-013-0487-1
    [60]
    ZHANG Z F, XIAO L Z, LIU H B, et al. A fast three-dimensional protocol for low-field Laplace NMR in porous media[J]. Applied Magnetic Resonance, 2013, 44(7): 849–857. doi: 10.1007/s00723-013-0451-0
    [61]
    黄科,肖立志,李新. 一种降低井下核磁共振振铃的新方法[J]. 波谱学杂志,2012,29(1):42–50.

    HUANG Ke, XIAO Lizhi, LI Xin. A novel method for NMR ringing reduction under downhole condition[J]. Chinese Journal of Magnetic Resonance, 2012, 29(1): 42–50.
    [62]
    LUO Sihui, XIAO Lizhi, JIN Yan, et al. A machine learning framework for low-field NMR data processing[J]. Petroleum Science, 2022, 19(2): 581–593. doi: 10.1016/j.petsci.2022.02.001
    [63]
    LUO Gang, XIAO Lizhi, LUO Sihui, et al. A study on multi-exponential inversion of nuclear magnetic resonance relaxation data using deep learning[J]. Journal of Magnetic Resonance, 2023, 346: 107358. doi: 10.1016/j.jmr.2022.107358
    [64]
    LIAO Guangzhi, LUO Sihui, XIAO Lizhi. Borehole nuclear magnetic resonance study at the China University of Petroleum[J]. Journal of Magnetic Resonance, 2021, 324: 106914. doi: 10.1016/j.jmr.2021.106914
    [65]
    WU Baosong, XIAO Lizhi, LI Xin, et al. Sensor design and implementation for a downhole NMR fluid analysis laboratory[J]. Petroleum Science, 2012, 9: 38–45. doi: 10.1007/s12182-012-0180-2
    [66]
    胡海涛. 电缆核磁共振测井仪探头关键技术研究[D]. 北京: 中国石油大学(北京), 2012.

    HU Haitao. Study of key technology in wireline NMR probe[D]. Beijing: China University of Petroleum(Beijing), 2012.
    [67]
    于慧俊. 核磁共振测井仪电子线路设计与实现[D]. 北京: 中国石油大学(北京), 2012.

    YU Huijun. Design and implementation of electronics in NMR logging[D]. Beijing: China University of Petroleum(Beijing), 2012.
    [68]
    傅少庆. 核磁共振测井数据处理软件设计与实现[D]. 北京: 中国石油大学(北京), 2012.

    FU Shaoqing. Design and implementation of data processing software in NMR logging[D]. Beijing: China University of Petroleum (Beijing), 2012.
    [69]
    谢庆民. 核磁共振测井降噪方法与应用研究[D]. 北京: 中国石油大学(北京), 2012.

    XIE Qingmin. Methods and applications of noise reduction in NMR logging[D]. Beijing: China University of Petroleum(Beijing), 2012.
    [70]
    吴保松. 井下核磁共振流体实验室关键技术研究[D]. 北京: 中国石油大学(北京), 2012.

    WU Baosong. Design and implementation of NMR sensor for downhole fluid laboratory[D]. Beijing: China University of Petroleum(Beijing), 2012.
    [71]
    李新. 随钻核磁共振测井仪探头关键技术研究[D]. 北京: 中国石油大学(北京), 2012.

    LI Xin. Study of key technology in LWD NMR probe[D]. Beijing: China University of Petroleum(Beijing), 2012.
    [72]
    王志战. 国内非常规油气录井技术进展及发展趋势[J]. 石油钻探技术,2017,45(6):1–7.

    WANG Zhizhan. Technical progress and developing trends in unconventional oil and gas mud logging in China[J]. Petroleum Drilling Techniques, 2017, 45(6): 1–7.
    [73]
    王志战,杜焕福,李香美,等. 陆相页岩油录井重点发展领域与技术体系构建[J]. 石油钻探技术,2021,49(4):155–162.

    WANG Zhizhan, DU Huanfu, LI Xiangmei, et al. Key development fields and construction of technical system for logging of continental shale oil[J]. Petroleum Drilling Techniques, 2021, 49(4): 155–162.
    [74]
    万亚旗,陈会年,杨明清,等. 录井装备技术现状及发展探讨[J]. 石油钻探技术,2018,46(2):115–119.

    WAN Yaqi, CHEN Huinian, YANG Mingqing, et al. Status quo and development exploration of mud logging equipment[J]. Petroleum Drilling Techniques, 2018, 46(2): 115–119.
    [75]
    李三国. 钻井液含油量核磁共振在线检测技术与系统研究[D]. 北京: 中国石油大学(北京), 2018.

    LI Sanguo. The study of drilling fluid NMR online analysis technology and system[D]. Beijing: China University of Petroleum (Beijing), 2018.
    [76]
    刘化冰. 孔隙介质低场核磁共振关键技术与应用[D]. 北京: 中国石油大学(北京), 2014.

    LIU Huabing. Key issues and application of low-field nuclear magnetic resonance in porous media[D]. Beijing: China University of Petroleum (Beijing), 2014.
    [77]
    邓峰. 低场在线核磁共振流体分析系统及其应用研究[D]. 北京: 中国石油大学(北京), 2014.

    DENG Feng. Low-field online nuclear magnetic resonance fluid analysis system and applications[D]. Beijing: China University of Petroleum (Beijing), 2014.
    [78]
    肖立志,于慧俊,刘化冰,等. 新型核磁共振孔隙介质分析仪的研制[J]. 中国石油大学学报(自然科学版),2013,37(3):68–73.

    XIAO Lizhi, YU Huijun, LIU Huabing, et al. A novel low field nuclear magnetic resonance analyzer for porous media[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(3): 68–73.
    [79]
    肖立志, 于慧俊, 刘化冰, 等. 核磁共振分析仪滑台和核磁共振分析仪: CN201210067251.2[P]. 2015-02-04.

    XIAO Lizhi, YU Huijun, LIU Huabing, et al. Nuclear magnetic resonance analyzer slide and nuclear magnetic resonance analyzer: CN201210067251.2[P]. 2015-02-04.
    [80]
    刘化冰, 汪正垛, 孙哲, 等. 一种能够形成变梯度静磁场的磁体系统结构: CN201720431548.0[P]. 2018-01-19.

    LIU Huabing, WANG Zhengduo, SUN Zhe, et al. A magnetic system structure capable of forming variable gradient static magnetic field: CN201720431548.0[P]. 2018-01-19.
    [81]
    李新,肖立志,刘化冰,等. 优化重聚脉冲提高梯度场核磁共振信号强度[J]. 物理学报,2013,62(14):147602. doi: 10.7498/aps.62.147602

    LI Xin, XIAO Lizhi, LIU Huabing, et al. Optimization of nuclear magnetic resonance refocusing pulses to enhance signal intensity in gradient B0 field[J]. Acta Physica Sinica, 2013, 62(14): 147602. doi: 10.7498/aps.62.147602
    [82]
    LIU Huabing, XIAO Lizhi, ZONG Fangrong, et al. Permeability profiling of rock cores using a novel spatially resolved NMR relaxometry method: Preliminary results from sandstone and limestone[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(5): 4601–4616. doi: 10.1029/2018JB016944
    [83]
    刘化冰, 宗芳荣, 汪正垛, 等. 一种快速核磁共振T1成像方法: CN201710869692.7[P]. 2018-02-23.

    LIU Huabing, ZONG Fangrong, WANG Zhengduo, et al. A fast MRI T1 imaging method: CN201710869692.7[P]. 2018-02-23.
    [84]
    邓峰, 赵瑞东, 师俊峰, 等. 一种确定多相流体组分流量的方法及装置: CN201710844809.6[P]. 2019-09-06.

    DENG Feng, ZHAO Ruidong, SHI Junfeng, et al. A method and device for determining component flow of multiphase fluid: CN201710844809.6[P]. 2019-09-06.
    [85]
    邓峰, 赵瑞东, 师俊峰, 等. 多相流磁共振流量计刻度装置及其含水率、流速刻度方法: CN201810479204.6[P]. 2020-01-07.

    DENG Feng, ZHAO Ruidong, SHI Junfeng, et al. Multiphase flow magnetic resonance flowmeter calibration device and its water content and flow rate calibration method: CN201810479204.6[P]. 2020-01-07.
    [86]
    邓峰, 陈诗雯, 陈冠宏, 等. 流体各组分流量测量装置及方法: CN201910986520.7[P]. 2022-11-04.

    DENG Feng, CHEN Shiwen, CHEN Guanhong, et al. Fluid component flow measuring device and method: CN201910986520.7[P]. 2022-11-04.
    [87]
    DENG Feng, XIONG Chunming, CHEN Shiwen, et al. A method and device for online magnetic resonance multiphase flow detection[J]. Petroleum Exploration and Development, 2020, 47(4): 855–866. doi: 10.1016/S1876-3804(20)60101-X
    [88]
    DENG Feng, CHEN Guanhong, WANG Mengying, et al. Magnetic resonance multi-phase flowmeter & fluid analyzer[R]. SPE 202208, 2020.
    [89]
    DENG Feng, CHEN Shiwen, CHEN Guanhong, et al. Intelligent decision making and optimization of artificial lifting based on MR multi-phase flow detection[R]. OTC-31349-MS, 2022.
    [90]
    DENG Feng, LIU Huabing, CHEN Shiwen, et al. Low-cost multi-phase flow metering and assays technology using online magnetic resonance[R]. SPE 211279, 2022.
    [91]
    SHI Junfeng, DENG Feng, XIAO Lizhi, et al. A proposed NMR solution for multi-phase flow fluid detection[J]. Petroleum Science, 2019, 16(5): 1148–1158. doi: 10.1007/s12182-019-00367-3
  • Related Articles

    [1]LIU Zilong, QIAN Xiao, HE Jia, LIAO Ruiquan, CHENG Chen. Research on Annular Flow Pressure Drop Model in Vertical Riser Annulus[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025022
    [2]ZHANG Xuliang, ZHANG Chi, ZHOU Bo, YANG Junqi, LU Yunhu, YIN Bangtang. Numerical Simulation of Gas-Liquid Two-Phase Flow Pattern in Large Annulus of Deep Well[J]. Petroleum Drilling Techniques, 2024, 52(6): 37-49. DOI: 10.11911/syztjs.2024109
    [3]WANG Zhiyuan, LIANG Peizhi, CHEN Keshan, ZHANG Zhi, ZHANG Jianbo, SUN Baojiang. Multi-Solution Analysis and Optimization Strategy for Intelligent Well Killing in Deep Formation[J]. Petroleum Drilling Techniques, 2024, 52(2): 136-145. DOI: 10.11911/syztjs.2024034
    [4]ZHANG Wenping, XU Zhengming, LYU Zehao, ZHAO Wen. Research on a Transient Flow Heat Transfer Model of Gas-Liquid-Solid Three-Phase Flow for Unbalanced Drilling in Deep Shale Wells[J]. Petroleum Drilling Techniques, 2023, 51(5): 96-105. DOI: 10.11911/syztjs.2023089
    [5]YAO Xiaojiang, LU Huatao, SHANG Jie, WANG Qinghua, LI Yang. Optimization Design and Numerical Analysis of Flow Passage Converters in LWD Tools[J]. Petroleum Drilling Techniques, 2021, 49(5): 121-126. DOI: 10.11911/syztjs.2021069
    [6]XIAN Yuxi, CHEN Chaofeng, FENG Meng, HAO Youzhi. Numerical Simulation of Multiphase Flow in Fracture Networks in Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(5): 94-100. DOI: 10.11911/syztjs.2021090
    [7]He Miao, Liu Gonghui, Li Jun, Li Mengbo, Zha Chunqing, Li Gen. Solution and Analysis of Fully Transient Temperature and Pressure Coupling Model for Multiphase Flow[J]. Petroleum Drilling Techniques, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005
    [8]Yan Rentian, Wang Feng, Zhang Deping, Zhu Hongjun, Zeng Dezhi. Failure Analysis of API Tubing Round Threaded Connection Induced by Flow Field[J]. Petroleum Drilling Techniques, 2012, 40(5): 111-114. DOI: 10.3969/j.issn.1001-0890.2012.05.024
    [9]Chen Mian, Jin Yan. Shale Gas Fracturing Technology Parameters Optimization Based on Core Analysis[J]. Petroleum Drilling Techniques, 2012, 40(4): 7-12. DOI: 10.3969/j.issn.1001-0890.2012.04.002
    [10]Yang Hongbin, Feng Songlin, Ju Yingjun, Pu Chunsheng, Wu Feipeng, Zhang Kai. Integrated Evaluation Approach of Reasonable Bottom-Hole Flowing Pressure of Oil Wells[J]. Petroleum Drilling Techniques, 2012, 40(1): 103-108. DOI: 10.3969/j.issn.1001-0890.2012.01.021
  • Cited by

    Periodical cited type(6)

    1. 崔式涛,赵永杰,肖飞,王磊,黄科,仁亚文,郭江峰. 内部磁场梯度对火山岩二维核磁共振响应影响. 测井技术. 2025(01): 31-39 .
    2. 宋彦佐,于会媛,陈敬智,沈玥,徐显能,徐征. 磁共振测井传感器磁体结构的拓扑优化方法. 波谱学杂志. 2025(01): 80-88 .
    3. 钟高润,吴彦君,王帅,李亚婷,雷开宇,李亚军,杨莎莎. 核磁共振技术在二氧化碳地质封存与利用中的应用研究前景综述. 地球物理学进展. 2024(01): 225-240 .
    4. 朱晓风,赵芝弘,谭蕊,周龙,王一川,刘文静,张明辉,刘化冰. 利用单边核磁共振研究樟子松木材干燥水分迁移规律. 波谱学杂志. 2024(02): 173-183 .
    5. 李邦国,侯家鵾,雷兆丰,张博,王斌,陈江. 超临界CO_2萃取页岩油效果评价及影响因素分析. 石油钻探技术. 2024(04): 94-103 . 本站查看
    6. 钟剑,马骁,侯学理,宫玉明,黄燕,卢亚普. 核磁测井仪通用采集平台辅助测量系统研制. 石油机械. 2024(12): 38-43 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (366) PDF downloads (121) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return