LI Bangguo, HOU Jiakun, LEI Zhaofeng, et al. Evaluation of shale oil extraction by supercritical CO2 and analysis of influencing factors [J]. Petroleum Drilling Techniques, 2024, 52(4):94-103. DOI: 10.11911/syztjs.2024069
Citation: LI Bangguo, HOU Jiakun, LEI Zhaofeng, et al. Evaluation of shale oil extraction by supercritical CO2 and analysis of influencing factors [J]. Petroleum Drilling Techniques, 2024, 52(4):94-103. DOI: 10.11911/syztjs.2024069

Evaluation of Shale Oil Extraction by Supercritical CO2 and Analysis of Influencing Factors

More Information
  • Received Date: November 08, 2022
  • Revised Date: July 10, 2024
  • Available Online: July 22, 2024
  • To define the influence mechanism of fractures and pressure on the extraction of shale oil by supercritical CO2, the core extraction experiment by supercritical CO2 was conducted on the basis of identifying the pore size distribution, specific surface area, and pore volume of experimental shales. The improved magnetic suspension balance high pressure adsorption instrument was used to measure the shale mass change under high temperature and pressure in real time. Combined with the nuclear magnetic resonance (NMR) T2 spectrum of shale, the extraction efficiency of shale oil by supercritical CO2 was accurately measured, and the producing characteristics of shale pores and the lower limit of producing pore size in the extraction process were defined. The experimental results show that the target reservoir shale mesopore (pore size of 2~50 nm) is the most developed, accounting for 69.72% and 73.47% of the total pore volume and total specific surface area. However, macropores (>50 nm) are the least developed, accounting for only 4.45% and 10.77% of the total pore volume and total specific surface area. The crude oil mainly exists in the pores with a small pore size of 1.4~120 nm. The extraction effect of CO2 on the crude oil in the pores with large pore size (>86 nm) is better than that in the pores with small pore size (≤86 nm). Fractures can increase the contact area between CO2 and shale oil in the matrix, accelerate the mass transfer rate of oil and gas, improve the depth of matrix production, and reduce the shale oil seepage resistance and the lower limit of pore production. However, the CO2 extraction efficiency is not only related to the number of fractures but also affected by matrix permeability and fracture-matrix connectivity. The lower limit of pore size for CO2 production decreases with the increase in injection pressure from 6.54 nm at 8 MPa to 3.27 nm at 18 MPa. The research findings provide a reference for enhancing the recovery rate of shale oil by injecting CO2.

  • [1]
    董岩,肖佃师,彭寿昌,等. 页岩油层系储集层微观孔隙非均质性及控制因素:以吉木萨尔凹陷芦草沟组为例[J]. 矿物岩石地球化学通报,2021,40(1):115–123.

    DONG Yan, XIAO Dianshi, PENG Shouchang, et al. Heterogeneity of microscopic pores in shale oil reservoir and its controlling factors: taking the Lucaogou Formation in the Jimusar Sag as an example[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(1): 115–123.
    [2]
    卢双舫,李俊乾,张鹏飞,等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发,2018,45(3):436–444. doi: 10.11698/PED.2018.03.08

    LU Shuangfang, LI Junqian, ZHANG Pengfei, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436–444. doi: 10.11698/PED.2018.03.08
    [3]
    屈海清. 鄂尔多斯盆地页岩气的开发[J]. 化工设计通讯,2019,45(7):264–265. doi: 10.3969/j.issn.1003-6490.2019.07.172

    QU Haiqing. Shale gas development in Ordos Basin[J]. Chemical Engineering Design Communications, 2019, 45(7): 264–265. doi: 10.3969/j.issn.1003-6490.2019.07.172
    [4]
    王晓雯. 致密油藏储层敏感性评价及主控因素研究[J]. 特种油气藏,2021,28(1):103–110. doi: 10.3969/j.issn.1006-6535.2021.01.015

    WANG Xiaowen. Study on reservoir sensitivity evaluation and key control factors of tight oil reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 103–110. doi: 10.3969/j.issn.1006-6535.2021.01.015
    [5]
    MA Quanzheng, YANG Shenglai, LYU Daoping, et al. Experimental investigation on the influence factors and oil production distribution in different pore sizes during CO2 huff-n-puff in an ultra-high-pressure tight oil reservoir[J]. Journal of Petroleum Science and Engineering, 2019, 178: 1155–1163. doi: 10.1016/j.petrol.2019.04.012
    [6]
    胡伟,吕成远,王锐,等. 水驱转CO2混相驱渗流机理及传质特征[J]. 石油学报,2018,39(2):201–207. doi: 10.7623/syxb201802008

    HU Wei, LYU Chengyuan, WANG Rui, et al. Porous flow mechanisms and mass transfer characteristics of CO2 miscible flooding after water flooding[J]. Acta Petrolei Sinica, 2018, 39(2): 201–207. doi: 10.7623/syxb201802008
    [7]
    李凤霞,王海波,周彤,等. 页岩油储层裂缝对CO2吞吐效果的影响及孔隙动用特征[J]. 石油钻探技术,2022,50(2):38–44. doi: 10.11911/syztjs.2022006

    LI Fengxia, WANG Haibo, ZHOU Tong, et al. The influence of fractures in shale oil reservoirs on CO2 huff and puff and its pore production characteristics[J]. Petroleum Drilling Techniques, 2022, 50(2): 38–44. doi: 10.11911/syztjs.2022006
    [8]
    GAMADI T D, SHENG J J, SOLIMAN M Y, et al. An experimental study of cyclic CO2 injection to improve shale oil recovery[R]. SPE 169142, 2014.
    [9]
    LI Lei, SU Yuliang, HAO Yongmao, et al. A comparative study of CO2 and N2 huff-n-puff EOR performance in shale oil production [J]. Journal of Petroleum Science and Engineering, 2019, 181: 106174. doi: 10.1016/j.petrol.2019.06.038
    [10]
    李二党,韩作为,高祥瑞,等. 不同注气介质驱替致密油藏微观孔隙动用特征研究[J]. 石油钻探技术,2020,48(5):85–91. doi: 10.11911/syztjs.2020078

    LI Erdang, HAN Zuowei, GAO Xiangrui, et al. Research on the microscopic pore producing characteristics of tight reservoirs displaced by different gas injection media[J]. Petroleum Drilling Techniques, 2020, 48(5): 85–91. doi: 10.11911/syztjs.2020078
    [11]
    LI Lei, SHENG J J. Numerical analysis of cyclic CH4 injection in liquid-rich shale reservoirs based on the experiments using different-diameter shale cores and crude oil[J]. Journal of Natural Gas Science and Engineering, 2017, 39: 1–14. doi: 10.1016/j.jngse.2017.01.017
    [12]
    ABEDINI A, TORABI F. Oil recovery performance of immiscible and miscible CO2 huff-and-puff processes[J]. Energy & Fuels, 2014, 28(2): 774–784.
    [13]
    YU Haiyang, XU Hang, FU Wenrui, et al. Extraction of shale oil with supercritical CO2: effects of number of fractures and injection pressure[J]. Fuel, 2021, 285: 118977. doi: 10.1016/j.fuel.2020.118977
    [14]
    刘永. 基于核磁共振流态分析的页岩微纳米孔隙类型划分方法[D]. 北京:中国地质大学(北京),2018.

    LIU Yong. A study of shale pore size classification by using low field nuclear magnetic resonance fluid typing method[D]. Beijing: China University of Geosciences(Beijing), 2018.
    [15]
    岳长涛,李术元,许心怡,等. 宜宾地区页岩微孔特征及吸附解吸特性研究[J]. 西南石油大学学报(自然科学版),2018,40(5):84–94.

    YUE Changtao, LI Shuyuan, XU Xinyi, et al. Micropore characteristics and adsorption and desorption properties of shales in the Yibin region[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2018, 40(5): 84–94.
    [16]
    肖立志,罗嗣慧,龙志豪. 井场核磁共振技术及其应用的发展历程与展望[J]. 石油钻探技术,2023,51(4):140–148. doi: 10.11911/syztjs.2023034

    XIAO Lizhi, LUO Sihui, LONG Zhihao. The course of development and the future of wellsite NMR technologies and their applications[J]. Petroleum Drilling Techniques, 2023, 51(4): 140–148. doi: 10.11911/syztjs.2023034
    [17]
    LYU Chaohui, NING Zhengfu, WANG Qing, et al. Application of NMR T2 to pore size distribution and movable fluid distribution in tight sandstones[J]. Energy & Fuels, 2018, 32(2): 1395–1405.
    [18]
    姚艳斌,刘大锰. 基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J]. 煤炭学报,2018,43(1):181–189.

    YAO Yanbin, LIU Dameng. Petrophysical properties and fluids transportation in gas shale: a NMR relaxation spectrum analysis method[J]. Journal of China Coal Society, 2018, 43(1): 181–189.
    [19]
    郎东江,伦增珉,吕成远,等. 页岩油注二氧化碳提高采收率影响因素核磁共振实验[J]. 石油勘探与开发,2021,48(3):603–612. doi: 10.11698/PED.2021.03.15

    LANG Dongjiang, LUN Zengmin, LYU Chengyuan, et al. Nuclear magnetic resonance experimental study of CO2 injection to enhance shale oil recovery[J]. Petroleum Exploration and Development, 2021, 48(3): 603–612. doi: 10.11698/PED.2021.03.15
    [20]
    黄兴,李响,张益,等. 页岩油储集层二氧化碳吞吐纳米孔隙原油微观动用特征[J]. 石油勘探与开发,2022,49(3):557–564. doi: 10.11698/PED.20210582

    HUANG Xing, LI Xiang, ZHANG Yi, et al. Microscopic production characteristics of crude oil in nano-pores of shale oil reservoirs during CO2 huff and puff[J]. Petroleum Exploration and Development, 2022, 49(3): 557–564. doi: 10.11698/PED.20210582
  • Related Articles

    [1]DAI Yifan, HOU Bing, LIAO Zhihao. Simulation of Hydraulic Fracturing in Deep Hot Dry Rock Reservoir Based on Phase-Field Method[J]. Petroleum Drilling Techniques, 2024, 52(2): 229-235. DOI: 10.11911/syztjs.2024047
    [2]JING Silin, SONG Xianzhi, SUN Yi, XU Zhengming, ZHOU Mengmeng. Study on Axial Transport Laws of Cuttings Bed in Horizontal Wells Based on a Differential Pressure Method[J]. Petroleum Drilling Techniques, 2024, 52(1): 54-61. DOI: 10.11911/syztjs.2024007
    [3]ZHANG Guilin. Modification of the Relative Time Method Calculation Formula for Oil and Gas Up-Channeling Velocity[J]. Petroleum Drilling Techniques, 2024, 52(1): 32-37. DOI: 10.11911/syztjs.2023102
    [4]WANG Zhizhan, HAN Yujiao, JIN Yunyun, WANG Yong, LUO Xi, YAN Yongxin. Nuclear Magnetic Resonance Evaluation Method of Shale Oil with Medium and Low Maturity in Biyang Sag[J]. Petroleum Drilling Techniques, 2023, 51(5): 58-65. DOI: 10.11911/syztjs.2023094
    [5]GUO Jiangfeng, XU Chenyu, XIE Ranhong, WANG Shuai, LIU Jilong, WANG Meng. Study on the NMR Response Mechanism of Micro-Fractured Tight Sandstones[J]. Petroleum Drilling Techniques, 2022, 50(4): 121-128. DOI: 10.11911/syztjs.2022091
    [6]ZHANG Guilin. Discussion on the Engineer's Well Killing Method in Typical Blowout Cases[J]. Petroleum Drilling Techniques, 2018, 46(6): 33-38. DOI: 10.11911/syztjs.2018131
    [7]TENG Xueqing, SUN Baojiang, ZHANG Yaoming, WANG Zhiyuan, LIU Hongtao, LYU Kaihe. A Five-Step Bullheading Killing Well Control Method for Fractured Formations without a Safety Pressure Window[J]. Petroleum Drilling Techniques, 2018, 46(6): 20-25. DOI: 10.11911/syztjs.2018157
    [8]YANG Yang, CAO Yanfeng, SUI Xianfu, YU Jifei, OUYANG Tiebing. Optimizal Method of Offshore Oil Artificial Lift Modes Based on Hierarchical Grade-Weighted Method[J]. Petroleum Drilling Techniques, 2016, 44(1): 73-78. DOI: 10.11911/syztjs.201601014
    [9]Liu Xiuquan, Chen Guoming, Song Qiang, Chang Yuanjiang, Xu Liangbin. Collapse Assessment for Deepwater Drilling Risers on the Basis of Finite Element Method[J]. Petroleum Drilling Techniques, 2015, 43(4): 43-47. DOI: 10.11911/syztjs.201504008
    [10]Ju Pei, Zhai Yinghu. Selection of PDC Bit by Using Improved Fuzzy Comprehensive Evaluation Method[J]. Petroleum Drilling Techniques, 2013, 41(1): 108-112. DOI: 10.3969/j.issn.1001-0890.2013.01.021
  • Cited by

    Periodical cited type(22)

    1. 姜志生,徐慧,何岩峰,刘楠楠,陈尚平,史幸,魏文基,陈晟. 多元热流体开发稠油出砂机理及规律(英文). 常州大学学报(自然科学版). 2024(02): 48-60 .
    2. 徐珂,刘敬寿,张辉,张冠杰,张滨鑫,王海应,张禹,来姝君,钱子维,强剑力. 复杂构造区全层系地质力学建模及其地质与工程应用. 地学前缘. 2024(05): 195-208 .
    3. 董长银,李经纬,周博,黄亮,刘亚宾,李强,黄有艺. 出砂气藏井底防砂筛管冲蚀动态模拟试验及冲蚀损坏工况评价方法. 安全与环境学报. 2023(06): 1859-1867 .
    4. 韩超,黄凡,职文栋,但顺华,万文胜,王琛. 基于核磁共振技术的疏松砂岩油藏微粒运移伤害机理. 科学技术与工程. 2023(20): 8621-8633 .
    5. 李敬彬,程康,胡静茹,黄中伟,王海柱. 水力喷射径向水平井回灌增注特性可视化试验研究. 流体机械. 2023(11): 1-8 .
    6. 鹿晓涵,侯满福,黄国辉,王永军,杨爱英,胡围焱. BQ地区东营组疏松砂岩试油测试压差确定方法. 油气井测试. 2023(06): 8-12 .
    7. 赵衍彬. 利用数字岩心方法评价稠油开采方式对渗透率的影响研究. 精细石油化工. 2022(01): 45-49 .
    8. Chang-Yin Dong,Bo Zhou,Fan-Sheng Huang,Lei Zhang,Yi-Zhong Zhao,Yang Song,Jun-Yu Deng. Microscopic sand production simulation and visual sanding pattern description in weakly consolidated sandstone reservoirs. Petroleum Science. 2022(01): 279-295 .
    9. 孙帅帅,赵成龙,王瑞祥,张启龙,石磊. 渤海XX油田防砂控水完井设计研究及案例分析. 科学技术创新. 2022(12): 177-180 .
    10. 董长银,陈琛,周博,隋义勇,王兴,王金忠. 油气藏型储气库出砂机理及防砂技术现状与发展趋势展望. 石油钻采工艺. 2022(01): 43-55 .
    11. 张启龙,韩耀图,龚宁,李进,陈卓. 基于LS-SVM的渤海油田防砂设计优化方法研究. 石油机械. 2021(01): 110-117 .
    12. 林海,张晓诚,谢涛,庹海洋,刘海龙,孙金. 基于断层稳定性的疏松砂岩临界注水压力研究. 重庆科技学院学报(自然科学版). 2021(02): 29-33+49 .
    13. 孙珂,陈清华,徐珂,孙建芳. 油水比例变化对岩石力学性质的影响及出砂分析——以金湖凹陷秦营断块区阜宁组储层为例. 中国矿业大学学报. 2021(05): 909-922 .
    14. 董长银,闫切海,周博,王宇宾,邓君宇,宋洋,王力智. 弱胶结储层微观出砂形态与出砂机理可视化实验模拟研究. 石油钻采工艺. 2020(02): 227-235 .
    15. 徐珂,田军,杨海军,张辉,王志民,袁芳,王海应. 深层致密砂岩储层现今地应力场预测及应用——以塔里木盆地克拉苏构造带克深10气藏为例. 中国矿业大学学报. 2020(04): 708-720 .
    16. 李进,许杰,龚宁,韩耀图,高斌. 渤海油田疏松砂岩储层动态出砂预测. 西南石油大学学报(自然科学版). 2019(01): 119-128 .
    17. 徐珂,戴俊生,商琳,房璐,冯建伟,杜赫. 南堡凹陷现今地应力特征及影响因素. 中国矿业大学学报. 2019(03): 570-583 .
    18. 董长银,闫切海,李彦龙,徐鸿志,周玉刚,尚校森,陈强,宋洋. 天然气水合物储层颗粒级尺度微观出砂数值模拟. 中国石油大学学报(自然科学版). 2019(06): 77-87 .
    19. REN Shaoran,LIU Yanmin,GONG Zhiwu,YUAN Yujie,YU Lu,WANG Yanyong,XU Yan,DENG Junyu. Numerical Simulation of Water and Sand Blowouts When Penetrating Through Shallow Water Flow Formations in Deep Water Drilling. Journal of Ocean University of China. 2018(01): 17-24 .
    20. 刘浩伽,李彦龙,刘昌岭,董长银,吴能友,孙建业. 水合物分解区地层砂粒启动运移临界流速计算模型. 海洋地质与第四纪地质. 2017(05): 166-173 .
    21. 董长银,周崇,钟奕昕,王鹏,崔明月,曾思睿,尚校森. 中等强度砂岩饱水力学参数变化试验及动态出砂规律. 中国石油大学学报(自然科学版). 2017(06): 108-116 .
    22. 陈欢庆,石成方,王珏,姚尧. 稠油热采储层精细油藏描述研究进展. 断块油气田. 2016(05): 549-553 .

    Other cited types(15)

Catalog

    Article Metrics

    Article views (86) PDF downloads (35) Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return