Citation: | WU Baizhi, YANG Zhen, GUO Tongzheng, et al. Response characteristics of logging While drilling system with multi-scale azimuthaWl electromagnetic waves [J]. Petroleum Drilling Techniques,2022, 50(6):7-13. DOI: 10.11911/syztjs.2022107 |
In order to detect changes in stratigraphic structures in time, and accurately evaluate formation while avoiding drilling risks, logging while drilling (LWD) instruments are required with adequate depth of detection (DOD) and higher resolution. However, the measurement results of a single scale LWD cannot simultaneously satisfy the stated requirements. Therefore, the detection characteristics of ultra-deep azimuthal electromagnetic wave LWD and a conventional one were simulated and investigated, and the boundary detection ability and resolution of the system were analyzed as well. Meanwhile, the detection effect of undrilled formation interface was also explored. Moreover, the quasi-Newton method was used to perform accurate and fast inversion of data from LWD with multi-scale azimuthal electromagnetic waves. The study results showed that by increasing the coil spacing and reducing the frequency, the LWD with ultra-deep azimuthal electromagnetic waves could have a boundary detection ability of tens of meters. Combined with a small-scale azimuthal electromagnetic wave LWD, the real-time resistivity profile of reservoirs through inversion could be obtained, so as to bring about geological prediction, geosteering, and reservoir characterization in the vicinity of wellbore and farther away.
[1] |
SEYDOUX J, LEGENDRE E, MIRTO E, et al. Full 3D deep directional resistivity measurements optimize well placement and provide reservoir-scale imaging while drilling[R]. SPWLA-2014-LLLL, 2014.
|
[2] |
YUAN Xiyong, DENG Shaogui, LI Zhiqiang, et al. Deep-detection of formation boundary using transient multicomponent electromagnetic logging measurements[J]. Petroleum Science, 2022, 19(3): 1085–1098. doi: 10.1016/j.petsci.2021.12.016
|
[3] |
WU Zhenguan, FAN Yiren, WANG Jiawei, et al. Application of 2.5-D finite difference method in logging-while-drilling electromagnetic measurements for complex scenarios[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4): 577–581. doi: 10.1109/LGRS.2019.2926740
|
[4] |
OMERAGIC D, LI Q, CHOU L, et al. Deep directional electromagnetic measurements for optimal well placement[R]. SPE 97045, 2005.
|
[5] |
BITTAR M, KLEIN J, BESTE R, et al. A new azimuthal deep-reading resistivity tool for geosteering and advanced formation evaluation[J]. SPE Reservoir Evaluation & Engineering, 2009, 12(2): 270–279.
|
[6] |
LI Shanjun, CHEN Jiefu, BINFORD T L, Jr, et al. Using new LWD measurements to evaluate formation resistivity anisotropy at any dip angle[R]. SPWLA-2014-EEEE, 2014.
|
[7] |
杨震,杨锦舟,韩来聚,等. 随钻方位电磁波界面探测性能分析[J]. 石油学报,2016,37(7):930–938. doi: 10.1038/aps.2016.55
YANG Zhen, YANG Jinzhou, HAN Laiju, et al. Interface detection performance analysis of azimuthal electromagnetic while drilling[J]. Acta Petrolei Sinica, 2016, 37(7): 930–938. doi: 10.1038/aps.2016.55
|
[8] |
杨震,杨锦舟,韩来聚. 随钻方位电磁波电阻率成像模拟及应用[J]. 吉林大学学报(地球科学版),2013,43(6):2035–2043. doi: 10.13278/j.cnki.jjuese.2013.06.023
YANG Zhen, YANG Jinzhou, HAN Laiju. Numerical simulation and application of azimuthal propagation resistivity imaging while drilling[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 2035–2043. doi: 10.13278/j.cnki.jjuese.2013.06.023
|
[9] |
刘乃震,王忠,刘策. 随钻电磁波传播方位电阻率仪地质导向关键技术[J]. 地球物理学报,2015,58(5):1767–1775.
LIU Naizhen, WANG Zhong, LIU Ce. Theories and key techniques of directional electromagnetic propagation resistivity tool for geosteering applications while drilling[J]. Chinese Journal of Geophysics, 2015, 58(5): 1767–1775.
|
[10] |
岳喜洲,刘天淋,李国玉,等. 随钻方位电磁波测井响应快速正演方法与地质导向应用[J]. 地球物理学报,2022,65(5):1909–1920.
YUE Xizhou, LIU Tianlin, LI Guoyu, et al. An analytically fast forward method of LWD azimuthal electromagnetic measurement and its geo-steering application[J]. Chinese Journal of Geophysics, 2022, 65(5): 1909–1920.
|
[11] |
WU H H, GOLLA C, PARKER T, et al. A new ultra-deep azimuthal electromagnetic LWD sensor for reservoir insight[R]. SPWLA-2018-X, 2018.
|
[12] |
HARTMANN A, VIANNA A, MAURER H M, et al. Verification testing of a new extra-deep azimuthal resistivity measurement[R]. SPWLA-2014-MM, 2014.
|
[13] |
张盼,邓少贵,胡旭飞,等. 超深随钻方位电磁波测井探测特性及参数敏感性分析[J]. 地球物理学报,2021,64(6):2210–2219.
ZHANG Pan, DENG Shaogui, HU Xufei, et al. Detection performance and sensitivity of logging-while-drilling extra-deep azimuthal resistivity measurement[J]. Chinese Journal of Geophysics, 2021, 64(6): 2210–2219.
|
[14] |
肖加奇,张国艳,洪德成,等. 层状各向异性地层中三维感应测井响应快速计算及资料处理[J]. 地球物理学报,2013,56(2):696–706.
XIAO Jiaqi, ZHANG Guoyan, HONG Decheng, et al. Fast forward modeling and data processing of 3D induction logging tool in layered anisotropic formation[J]. Chinese Journal of Geophysics, 2013, 56(2): 696–706.
|
[15] |
魏宝君,田坤,张旭,等. 定向电磁波传播随钻测量基本理论及其在地层界面预测中的应用[J]. 地球物理学报,2010,53(10):2507–2515.
WEI Baojun, TIAN Kun, ZHANG Xu, et al. Physics of directional electromagnetic propagation measurements-while-drilling and its application for forecasting formation boundaries[J]. Chinese Journal of Geophysics, 2010, 53(10): 2507–2515.
|
[16] |
黄明泉,杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术,2020,48(1):114–119. doi: 10.11911/syztjs.2019132
HUANG Mingquan, YANG Zhen. Simulation to determine depth of detection and response characteristics while drilling of an ultra-deep electromagnetic wave instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114–119. doi: 10.11911/syztjs.2019132
|
[17] |
SEYDOUX J, DENICHOU J M, AMIR I, et al. Real-time EM look-ahead: A maturing technology to decrease drilling risk in low inclination wells[R]. SPWLA-2019-GGGG, 2019.
|
[18] |
胡旭飞,范宜仁,吴非,等. 随钻方位电磁波测井多参数快速反演[J]. 地球物理学报,2018,61(11):4690–4701. doi: 10.6038/cjg2018L0746
HU Xufei, FAN Yiren, WU Fei, et al. Fast multiple parameter inversion of azimuthal LWD electromagnetic measurement[J]. Chinese Journal of Geophysics, 2018, 61(11): 4690–4701. doi: 10.6038/cjg2018L0746
|
[19] |
王磊,刘英明,王才志,等. 水平井随钻电磁波测井实时正反演方法[J]. 石油勘探与开发,2021,48(1):139–147. doi: 10.11698/PED.2021.01.12
WANG Lei, LIU Yingming, WANG Caizhi, et al. Real-time forward modeling and inversion of logging-while-drilling electromagnetic measurements in horizontal wells[J]. Petroleum Exploration and Development, 2021, 48(1): 139–147. doi: 10.11698/PED.2021.01.12
|
[1] | YU Libin, ZHANG Zhigang, JIANG Zhaomin, XU Hui, ZHANG Hongfu, HAN Xurui. Development and Field Testing of the Bionic Peristaltic Drilling Tool[J]. Petroleum Drilling Techniques, 2025, 53(1): 55-59. DOI: 10.11911/syztjs.2024113 |
[2] | HUANG Feng, CHEN Shichun, LIU Lichao, GUO Chao, LIU Yibin, SHI Yucai. Development and Field Test of BH-VDT3000 Vertical Drilling System[J]. Petroleum Drilling Techniques, 2024, 52(6): 62-68. DOI: 10.11911/syztjs.2024114 |
[3] | ZHANG Longsheng, WANG Weiheng. Preparation and Field Test of Double-Shell Coated Proppant (DSCP)[J]. Petroleum Drilling Techniques, 2023, 51(1): 91-97. DOI: 10.11911/syztjs.2023014 |
[4] | LIU Jianhua, LING Wenxue, WANG Heng. Study on Rock Breaking Mechanism and Field Test of Triangular Prismatic PDC Cutters[J]. Petroleum Drilling Techniques, 2021, 49(5): 46-50. DOI: 10.11911/syztjs.2021040 |
[5] | LIU Pingquan, LI Leibing, SHI Yucen, HAN Long. Research and Field Test of Electrically Controlled Sidewall Deep Penetrating Perforating Technology[J]. Petroleum Drilling Techniques, 2021, 49(3): 55-61. DOI: 10.11911/syztjs.2021055 |
[6] | SU Zhenguo, TANG Zhijun. The Design and Field Testing of Two-Stage and Two-Speed Drilling Tools[J]. Petroleum Drilling Techniques, 2019, 47(1): 59-64. DOI: 10.11911/syztjs.2019010 |
[7] | YANG Haibo, HOU Ting, FENG Dejie, TENG Zhaozheng, WU Liugen. Research and Field Test of Non-Drilling Plug Expandable Casing Patching Technology[J]. Petroleum Drilling Techniques, 2017, 45(5): 73-77. DOI: 10.11911/syztjs.201705013 |
[8] | ZHENG Xiaozhi, GU Lei, MA Lanrong, ZHANG Guoan. Performance and Field Tests of Rotary Expandable Liner Hanger[J]. Petroleum Drilling Techniques, 2016, 44(3): 55-60. DOI: 10.11911/syztjs.201603010 |
[9] | Wang Zaiming, Zhu Kuanliang, Feng Jinghai, Wu Yan, Shen Yuanyuan. Development and Field Test of High-Temperature Gel Valve[J]. Petroleum Drilling Techniques, 2015, 43(4): 78-82. DOI: 10.11911/syztjs.201504014 |
[10] | Liu Gang, Sun Jin, He Baosheng, Tian Ji, Geng Zhanli. Design and Field Test of Surface Monitoring System for Directional Wells Anti-Collision[J]. Petroleum Drilling Techniques, 2012, 40(1): 7-11. DOI: 10.3969/j.issn.1001-0890.2012.01.002 |
1. |
耿学礼,郑晓斌,苏延辉,敬倩,史斌,李建. 沁南区域煤层气水平井瓜尔胶钻井液技术. 石油钻探技术. 2023(01): 34-39 .
![]() | |
2. |
梁龙军,陈捷,颜智华,高为,易旺,胡海洋. 六盘水煤田大倾角地层煤层气L型水平井钻完井技术. 断块油气田. 2023(04): 616-623 .
![]() | |
3. |
陈天,易远元,李甜甜,兰天庆. 中国煤层气勘探开发现状及关键技术展望. 现代化工. 2023(09): 6-10 .
![]() | |
4. |
张冲. 煤矿区煤层气水平对接井轨迹控制与完井技术研究分析. 中国石油和化工标准与质量. 2022(09): 177-179 .
![]() |