LIU Pingquan, LI Leibing, SHI Yucen, HAN Long. Research and Field Test of Electrically Controlled Sidewall Deep Penetrating Perforating Technology[J]. Petroleum Drilling Techniques, 2021, 49(3): 55-61. DOI: 10.11911/syztjs.2021055
Citation: LIU Pingquan, LI Leibing, SHI Yucen, HAN Long. Research and Field Test of Electrically Controlled Sidewall Deep Penetrating Perforating Technology[J]. Petroleum Drilling Techniques, 2021, 49(3): 55-61. DOI: 10.11911/syztjs.2021055

Research and Field Test of Electrically Controlled Sidewall Deep Penetrating Perforating Technology

More Information
  • Received Date: September 28, 2020
  • Revised Date: March 21, 2021
  • Available Online: May 09, 2021
  • Traditional explosive perforation is subject to a short penetration distance and a compaction effect. Although the existing hydraulic perforating technology has remedied the deficiencies, it needs to cooperate with oil tubing or coiled tubing, with a long operation period and a high cost. Also, it is difficult to monitor the construction process directly and accurately only with surface pump pressure signals. With regard to this problem, research was performed on electrically controlled sidewall deep penetrating perforating technology (ECSDPPT). DC motors were selected to replace high-pressure water pumps as the energy source. Perforating tools were suspended by electric cables for transmission instead of oil tubing or coiled tubing, and the cables also transmitted electrical energy and delivered commands to control perforating operations. A real-time monitoring system was developed to monitor the drilling process into formations timely and accurately. As a result, an electrically controlled sidewall deep penetrating perforating system was built. Ground and field tests prove that the ECSDPPT enables the drilling into formations by over 2.00 m, forming a borehole with a diameter of 20.0–30.0 mm. The monitoring system can accurately calculate the actual perforating length in time by identifying and recording the electric pulse signals from a downhole Hall sensor during formation drilling. The research results demonstrate that the ECSDPPT relying on cable transmission is fast, efficient and low-cost. It overcomes the shortcomings of conventional explosive perforation, providing a new method for connecting and reforming near wellbore formations. In addition, the monitoring system can record the drilling length and other parameters in real time during construction, effectively solving the failure of the existing hydraulic perforating technology in monitoring the working process.
  • [1]
    李军,毕胜宇,柳贡慧,等. 低渗透岩芯实弹射孔实验研究[J]. 西南石油大学学报(自然科学版),2011,33(1):102–106.

    LI Jun, BI Shengyu, LIU Gonghui, et al. Study on perforation test of low permeability core with shaped charge[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2011, 33(1): 102–106.
    [2]
    张艺耀,李进,冯硕,等. 自清洁射孔技术在渤海油田的应用[J]. 石油矿场机械,2020,49(4):69–73. doi: 10.3969/j.issn.1001-3482.2020.04.014

    ZHANG Yiyao, LI Jin, FENG Shuo, et al. Application of self-cleaning perforation technology in Bohai Oilfield[J]. Oil Field Equipment, 2020, 49(4): 69–73. doi: 10.3969/j.issn.1001-3482.2020.04.014
    [3]
    范翔宇,王俊瑞,夏宏泉,等. 基于灰色系统理论的钻井液污染储层深度预测[J]. 西南石油大学学报(自然科学版),2013,35(3):98–104.

    FAN Xiangyu, WANG Junrui, XIA Hongquan, et al. Drilling fluid′s damage depth prediction method based on the grey system theory[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(3): 98–104.
    [4]
    李东传,唐国海,孙新波,等. 射孔压实带研究[J]. 石油勘探与开发,2000,27(5):112–114. doi: 10.3321/j.issn:1000-0747.2000.05.034

    LI Dongchuan, TANG Guohai, SUN Xinbo, et al. A study on perforation crushed-zone[J]. Petroleum Exploration and Development, 2000, 27(5): 112–114. doi: 10.3321/j.issn:1000-0747.2000.05.034
    [5]
    任建民. 超短半径水平井喷射钻井机理[J]. 石油机械,1994,22(10):50–55.

    REN Jianmin. Jet drilling mechanism of ultra-short radius horizontal well[J]. China Petroleum Machinery, 1994, 22(10): 50–55.
    [6]
    张锦宏. 中国石化石油工程技术现状及发展建议[J]. 石油钻探技术,2019,47(3):9–17.

    ZHANG Jinhong. Current status and outlook for the development of Sinopec,s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2019, 47(3): 9–17.
    [7]
    中国石油集团长城钻探工程有限公司. 深穿透电控钻孔装置: CN201810623247.7 [P]. 2018-11-30.

    CNPC Greatwall Drilling Company. Electrically controlled deep penetrating perforating device: CN201810623247.7 [P]. 2018-11-30.
    [8]
    宗世伟,徐东后,李伟,等. 无刷直流电机在旋转式井壁取芯仪中的应用[J]. 石油仪器,2013,27(6):5–6, 9.

    ZONG Shiwei, XU Donghou, LI Wei, et al. Application of brushless DC motor in rotary wall coring apparatus[J]. Petroleum Instruments, 2013, 27(6): 5–6, 9.
    [9]
    宋伟刚. 机器人学: 运动学、动力学与控制[M]. 北京: 科学出版社, 2007: 50–70.

    SONG Weigang. Robotics: kinematics, dynamics and control[M]. Beijing: Science Press, 2007: 50–70.
    [10]
    罗敏,徐亭亭,贾丽,等. 超短半径水平井柔性钻杆非线性力学分析[J]. 机械设计与制造工程,2016,45(7):21–24. doi: 10.3969/j.issn.2095-509X.2016.07.004

    LUO Min, XU Tingting, JIA Li, et al. Nonlinear mechanics analysis of flexible drill rod in ultra short radius horizontal well[J]. Machine Design and Manufacturing Engineering, 2016, 45(7): 21–24. doi: 10.3969/j.issn.2095-509X.2016.07.004
    [11]
    张继峰,刘忠和,朱再思,等. 穿透射孔技术最新发展及应用[J]. 石油机械,2002,30(10):68–70. doi: 10.3969/j.issn.1001-4578.2002.10.024

    ZHANG Jifeng, LIU Zhonghe, ZHU Zaisi, et al. The latest development and application of hydraulic deep p enetration technology[J]. China Petroleum Machinery, 2002, 30(10): 68–70. doi: 10.3969/j.issn.1001-4578.2002.10.024
    [12]
    阮海龙,纪卫军,沈立娜,等. 针对复杂地层金刚石钻头的改进与应用[J]. 探矿工程(岩土钻掘工程),2010,37(1):67–69.

    RUAN Hailong, JI Weijun, SHEN Lina, et al. Improvement and application of diamond bit for drilling in complex formation[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2010, 37(1): 67–69.
    [13]
    张斯其. 霍尔传感器电机测速综合改进技术研究[J]. 微特电机,2018,46(5):31–34. doi: 10.3969/j.issn.1004-7018.2018.05.008

    ZHANG Siqi. Research on hall sensor motor speed improvement technology[J]. Small & Special Electrical Machines, 2018, 46(5): 31–34. doi: 10.3969/j.issn.1004-7018.2018.05.008
    [14]
    郝晓剑. 测控电路设计与应用[M]. 北京: 电子工业出版社, 2017: 136-152.

    HAO Xiaojian. Design and application of measurement and control circuit[M]. Beijing: Electronic Industry Press, 2017: 136-152.
    [15]
    刘平全. 径向水平井技术发展及工具特点[J]. 石油矿场机械,2018,47(1):23–27.

    LIU Pingquan. Design and operation of descaling device used for tubing string[J]. Oil Field Equipment, 2018, 47(1): 23–27.
  • Related Articles

    [1]SUN Huan, ZHU Mingming, YANG Yongping, WANG Weiliang, WANG Kai, ZHAO Xiangyang. Comprehensive Leakage Control Technology for Shale Gas Wells in Western Margin Thrust Zone of Ordos Basin[J]. Petroleum Drilling Techniques, 2025, 53(1): 49-54. DOI: 10.11911/syztjs.2024117
    [2]SHI Peiming, NI Huafeng, HE Huifeng, SHI Chongdong, LI Luke, ZHANG Yanbing. Key Technologies for Safe Drilling in Horizontal Section of Deep Coal Rock Gas Horizontal Well in Ordos Basin[J]. Petroleum Drilling Techniques, 2025, 53(1): 17-23. DOI: 10.11911/syztjs.2024112
    [3]ZHAO Zhenfeng, WANG Wenxiong, XU Xiaochen, YE Liang, LI Ming. Hydraulic Fracturing Technology for Deep Marine Shale Gas in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 23-32. DOI: 10.11911/syztjs.2023081
    [4]ZHANG Kuangsheng, QI Yin, XUE Xiaojia, TAO Liang, CHEN Wenbin, WU An’an. CO2 Regional Enhanced Volumetric Fracturing Technology for Shale Oil Horizontal Wells in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 15-22. DOI: 10.11911/syztjs.2023091
    [5]ZHANG Jinping, NI Huafeng, SHI Peiming. Safe and Efficient Drilling in Presalt High-Sulfur Reservoirs in the Eastern Gas Fields of Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(3): 22-29. DOI: 10.11911/syztjs.2023073
    [6]ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, TAO Liang. Practice and Development Suggestions for Volumetric Fracturing Technology for Shale Oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85-91. DOI: 10.11911/syztjs.2021075
    [7]HE Zuqing, LIANG Chengchun, PENG Hanxiu, ZHU Ming, HE Tong. Research and Tests on Horizontal Well Smart Layering Exploiting Technology in Tight Oil Reservoirs in Southern Ordos Basin[J]. Petroleum Drilling Techniques, 2017, 45(3): 88-94. DOI: 10.11911/syztjs.201703016
    [8]WANG Guangtao, XU Chuangchao, CAO Zongxiong, GUO Xiaoyong. A Sand Control Downhole Fracturing Technique for Tight Reservoir Development in the Ordos Basin[J]. Petroleum Drilling Techniques, 2016, 44(5): 84-89. DOI: 10.11911/syztjs.201605014
    [9]Qin Jinli, Chen Zuo, Yang Tongyu, Dai Wenchao, Wu Chunfang. Technology of Staged Fracturing with Multi-Stage Sleeves for Horizontal Wells in the Ordos Basin[J]. Petroleum Drilling Techniques, 2015, 43(1): 7-12. DOI: 10.11911/syztjs.201501002
    [10]Guo Wenmeng, Dang Donghong, Zhu Zexin, Xu Minghui, Chen Guang, Huang Xia. Cementing Techniques of Mono-Bore Well Completion in Yishan Slope of Ordos Basin[J]. Petroleum Drilling Techniques, 2014, 42(4): 75-78. DOI: 10.3969/j.issn.1001-0890.2014.04.014
  • Cited by

    Periodical cited type(13)

    1. 李凯凯,安然,瞿春,王毅,贺红云. 超低渗透油藏暂堵压裂技术优化研究. 石油化工应用. 2023(11): 44-47+67 .
    2. 张旺,吕永国,李忠宝,谢琳,邓建华. 绳结暂堵塞性能研究及现场应用. 中外能源. 2022(12): 63-69 .
    3. 张笑言. 低产油气井强制裂缝转向重复压裂技术. 化学工程与装备. 2022(12): 123-124+138 .
    4. 李德旗,朱炬辉,张俊成,石孝志,李军龙,邹清腾,张权,胡洋. 页岩气水平井选择性分簇压裂工艺先导性试验——以昭通国家级页岩气示范区为例. 天然气工业. 2021(S1): 133-137 .
    5. 邴艳炜. 低产油气井重复压裂技术. 化学工程与装备. 2021(04): 143+120 .
    6. 周丹,熊旭东,何军榜,董波,贺勇. 低渗透储层多级转向压裂技术. 石油钻探技术. 2020(01): 85-89 . 本站查看
    7. 李春月,房好青,牟建业,黄燕飞,胡文庭. 碳酸盐岩储层缝内暂堵转向压裂实验研究. 石油钻探技术. 2020(02): 88-92 . 本站查看
    8. 夏海帮. 页岩气井双暂堵压裂技术研究与现场试验. 石油钻探技术. 2020(03): 90-96 . 本站查看
    9. 蔡卓林,赵续荣,南荣丽,陈华生,李秀辉,梁天博. 暂堵转向结合高排量体积重复压裂技术. 断块油气田. 2020(05): 661-665 .
    10. 孟祥灿. 大情字井油田A区块重复压裂增产技术. 油气井测试. 2020(05): 44-49 .
    11. 郭睿,于瑾,毕青,李新发. 玉门油田深井重复压裂技术研究与应用. 中国石油和化工标准与质量. 2020(22): 190-191 .
    12. 张子麟,陈勇,张全胜,李爱山,张潦源,李明,黄波. 致密砂砾岩压裂裂缝遇砾扩展模式的数值模拟研究. 油气地质与采收率. 2019(04): 132-138 .
    13. 蒋建方,翟晓鹏,贺甲元,耿宇迪,崔佳,魏攀峰. 绒囊暂堵剂在深层碳酸盐岩储层转向压裂中的应用. 天然气工业. 2019(12): 81-87 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (493) PDF downloads (77) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return