Citation: | PANG Wei, LIU Liming, HE Zuqing, HE Tong, WANG Guohua. A Dynamic Prediction Method for Segmental Flow Performance in Horizontal Wells Based on Node Networks[J]. Petroleum Drilling Techniques, 2019, 47(2): 93-98. DOI: 10.11911/syztjs.2019006 |
The dynamic prediction of segmental flow performance in horizontal wells is the basis for analyzing the adjustment effect of wellbore fluid inflow in different completion methods and the production performance of different well sections. The completion structure can be simplified into a three-layer node network composed of the formation, the annulus between borehole wall and completion tools, and completion tools. Based on the principle of mass conservation and the theorem of momentum conservation, the pressure drop model of various flow bridges was established. The bridge flow index was used to characterize the direction of fluid flow, and with the performance prediction model of the fluid flow in the coupling formation, the above mentioned annulus and the completion tools were further established. Finally, the Newton–Raphson iterative method was used to find the solution. The analysis on the calculation example showed that this model is able to predict the annulus, pressure and flow distribution in the tubing in horizontal wells with complex completion structure, and it can effectively reflect the impact of completion mode and completion tools on the fluid flow performance of the wellbore, with higher prediction precision. The established model can provide theoretical supports for the selection of segmental completion method and parameters for best practices for the optimization design of horizontal wells.
[1] |
MAALOUF C B, ZIDAN M, UIJTTENHOUT M, et al. Responsive design of inflow control devices completions for horizontal wells[R]. SPE 188794, 2017.
|
[2] |
ABDULLAYEV A, KEDIA R, URAKOV A, et al. Optimization of recovery using intelligent completions in intelligent fields(Russian)[R]. SPE 188993, 2017.
|
[3] |
韩来聚. 胜利油田钻井完井技术新进展及发展建议[J]. 石油钻探技术, 2017, 45(1): 1–9.
HAN Laiju. The latest progress and suggestions of drilling and completion techniques in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(1): 1–9.
|
[4] |
杨智光. 大庆油田钻井完井技术新进展及发展建议[J]. 石油钻探技术, 2016, 44(6): 1–10.
YANG Zhiguang. The latest proposals for the advancement and development of drilling and completion technology in the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(6): 1–10.
|
[5] |
JOSHI S D. Augmentation of well productivity using slant and horizontal wells[R]. SPE 15375, 1986.
|
[6] |
BABU D K, ODEH A S. Productivity of a horizontal well[R]. SPE 18298, 1989.
|
[7] |
ELGAGHAH S A, OSISANYA S O, TIAB D. A simple productivity equation for horizontal wells based on drainage area concept[R]. SPE 35713, 1996.
|
[8] |
FURUI K, ZHU D, HILL A D. A rigorous formation damage skin factor and reservoir inflow model for a horizontal well[J]. SPE Production & Facilities, 2003, 18(3): 151–157.
|
[9] |
DIKKEN B J. Pressure drop in horizontal wells and its effect on production performance[J]. Journal of Petroleum Technology, 1990, 42(11): 1426–1433. doi: 10.2118/19824-PA
|
[10] |
OZKAN E, SARICA C, HACIISLAMOGLU M, et al. Effect of conductivity on horizontal well pressure behavior[R]. SPE 24683, 1992.
|
[11] |
IHARA M, KIKUYAMA K, MIZUGUCHI K. Flow in horizontal wellbores with influx through porous walls[R]. SPE 28485, 1994.
|
[12] |
周生田, 张琪. 水平井筒压降计算方法[J]. 石油钻采工艺, 1997, 19(1): 53–59.
ZHOU Shengtian, ZHANG Qi. Calculating method of pressure drop in horizontal wellbore[J]. Oil Drilling & Production Technology, 1997, 19(1): 53–59.
|
[13] |
OUYANG Liangbiao, ARBABI S, AZIZ K. General wellbore flow model for horizontal, vertical, and slanted well completions[J]. SPE Journal, 1998, 3(2): 124–133. doi: 10.2118/36608-PA
|
[14] |
CLEMO T. Flow in perforated pipes: a comparison of models and experiments[R]. SPE 89036, 2006.
|
[15] |
OUYANG Liangbiao, AZIZ K. A simplified approach to couple wellbore flow and reservoir inflow for arbitrary well configurations[R]. SPE 48936, 1998.
|
[16] |
PENMATCHA V R, AZIZ K. Comprehensive reservoir/wellbore model for horizontal wells[J]. SPE Journal, 1999, 4(3): 224–234. doi: 10.2118/57194-PA
|
[17] |
刘想平, 郭呈柱, 蒋志祥, 等. 油层中渗流与水平井筒内流动的耦合模型[J]. 石油学报, 1999, 20(3): 82–86.
LIU Xiangping, GUO Chengzhu, JIANG Zhixiang, et al. The model coupling fluid flow in the reservoir with flow in the horizontal wellbore[J]. Acta Petrolei Sinica, 1999, 20(3): 82–86.
|
[18] |
黄世军, 程林松, 赵凤兰, 等. 阶梯水平井生产段油藏渗流与井筒变质量管流的耦合模型[J]. 水动力学研究与进展(A辑), 2005, 20(4): 463–471.
HUANG Shijun, CHENG Linsong, ZHAO Fenglan, et al. The flow model coupling reservoir percolation and variable mass pipe flow in production section of the stepped horizontal well[J]. Journal of Hydrodynamics(Series A), 2005, 20(4): 463–471.
|
[19] |
庞伟, 陈德春, 张仲平, 等. 非均质油藏水平井分段变密度射孔优化模型[J]. 石油勘探与开发, 2012, 39(2): 214–221.
PANG Wei, CHEN Dechun, ZHANG Zhongping, et al. Segmentally variable density perforation optimization model of horizontal wells in heterogenic reservoirs[J]. Petroleum Exploration and Development, 2012, 39(2): 214–221.
|
[20] |
NEYLON K, REISO E, HOLMES J A, et al. Modeling well inflow control with flow in both annulus and tubing[R]. SPE 118909, 2009.
|
[21] |
王庆, 刘慧卿, 张红玲, 等. 油藏耦合水平井调流控水筛管优选模型[J]. 石油学报, 2011, 32(2): 346–349.
WANG Qing, LIU Huiqing, ZHANG Hongling, et al. An optimization model of completion strings with inner-located nozzle in horizontal wells coupled with reservoirs[J]. Acta Petrolei Sinica, 2011, 32(2): 346–349.
|
[22] |
庞伟. 酸性气藏深井产能试井方法[J]. 油气井测试, 2018, 27(2): 67–72.
PANG Wei. Deliverability test method for deep sour gas wells[J]. Well Testing, 2018, 27(2): 67–72.
|
[23] |
刘成文, 李兆敏. 锥形喷嘴流量系数及水力参数的理论计算方法[J]. 钻采工艺, 2000, 23(5): 1–3. doi: 10.3969/j.issn.1006-768X.2000.05.001
LIU Chengwen, LI Zhaomin. A theoretical calculation method for flow rate coefficient and hydraulic parameters of conical nozzle[J]. Drilling & Production Technology, 2000, 23(5): 1–3. doi: 10.3969/j.issn.1006-768X.2000.05.001
|
1. |
姜立富,康凯,李冰,刘思远,范佳乐. 一种水平井射孔入流剖面优化方法. 油气井测试. 2021(02): 1-6 .
![]() | |
2. |
吕坚,何浪,汤明. 致密地层形成泥饼临界条件研究. 西部探矿工程. 2020(11): 42-45+49 .
![]() |