Citation: | YANG Zhonghan, LUO Ming, CHEN Jianghua, XU Fabin, XU Jing. Cement Squeezing for Pressure-Bearing Plugging in Ultra-High Temperature and High Pressure Wells in the Yinggehai Basin[J]. Petroleum Drilling Techniques, 2020, 48(3): 47-51. DOI: 10.11911/syztjs.2020012 |
Cement squeezing in deep, hot, harsh environments presents special challenges The X structure of Yinggehai Basin in the western South China Sea oilfield is one such example. It has an ultra-high temperature and high pressure structure, with the formation temperature of up to 204 ℃ and formation pressure coefficient of up to 2.19. However, cement squeezing has been dangerously weak due to the low formation pressure-bearing capacity and narrow safety density window, and complications such as leakage could easily occur during drilling, which seriously affect the safety and integrity of operations. In order to improve the formation pressure-bearing capacity and ensure the safe and smooth drilling of ultra-high temperature and high pressure sections, a cement squeezing system “preflush + high temperature resistant cement slurry” was designed to improve the temperature resistance properties of leakage plugging slurry and enhance its sealing performance by optimizing the formulation of plugging cement slurry. The intermittent cement squeezing process of “cleaning pilot squeezing fluid + cement squeezing slurry” was adopted, and Drillbench software was used to simulate and analyze the wellbore temperature field, which accurately controls the slurry volume and gelation time based on the wellbore temperature field and effectively improves the plugging effect. Field application results showed that the technology could improve the pressure-bearing capacity of formation, and expand the safety density window in the X structure, as well as provide important conditions for the safe and smooth drilling in subsequent ultra-high temperature and high pressure sections. This technology can provide technical support for the successful drilling of the X structure in the Yinggehai Basin, which is worthy of reference for similar ultra-high temperature and high pressure wells.
[1] |
罗鸣,韩成,陈浩东,等. 南海西部高温高压井堵漏技术[J]. 石油钻采工艺, 2016, 38(6): 801–804.
LUO Ming, HAN Cheng, CHEN Haodong, et al. Plugging technology for HTHP wells in western South China Sea[J]. Oil Drilling & Production Technology, 2016, 38(6): 801–804.
|
[2] |
陈晓华,王翔,冯永超,等. 泾河油田裂缝性致密油藏防漏堵漏技术[J]. 断块油气田, 2017, 24(2): 297–300.
CHEN Xiaohua, WANG Xiang, FENG Yongchao, et al. Loss prevention and control technology for fractured reservoirs in Jinghe Oilfield [J]. Fault-Block Oil & Gas Field, 2017, 24(2): 297–300.
|
[3] |
柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井井技术[J]. 石油钻探技术, 2020, 48(1): 9–14.
LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14.
|
[4] |
何选蓬,程天辉,周健,等. 秋里塔格构造带风险探井中秋1井安全钻井关键技术[J]. 石油钻采工艺, 2019, 41(1): 1–7.
HE Xuanpeng, CHENG Tianhui, ZHOU Jian, et al. Key technologies of safe drilling in Zhongqiu 1 Well, a risk exploration well in Qiulitag tectonic belt[J]. Oil Drilling & Production Technology, 2019, 41(1): 1–7.
|
[5] |
田军,刘文堂,李旭东,等. 快速滤失固结堵漏材料ZYSD的研制及应用[J]. 石油钻探技术, 2018, 46(1): 49–54.
TIAN Jun, LIU Wentang, LI Xudong, et al. Development and application of rapid filtration and consolidation lost circulation material ZYSD[J]. Petroleum Drilling Techniques, 2018, 46(1): 49–54.
|
[6] |
石秉忠,解超,李胜,等. 杭锦旗区块锦58井区钻井液技术实践与认识[J]. 石油钻探技术, 2017, 45(6): 37–41.
SHI Bingzhong, XIE Chao, LI Sheng, et al. Development and application of drilling fluid in the Jin-58 Well Block of the Hangjinqi Block[J]. Petroleum Drilling Techniques, 2017, 45(6): 37–41.
|
[7] |
马新中,张申申,方静,等. 塔河10 区碳酸盐岩裂缝型储层承压堵漏技术[J]. 钻井液与完井液, 2018, 35(5): 36–40.
MA Xinzhong, ZHANG Shenshen, FANG Jing,et al. Study on mud loss control under pressure in drilling fractured carbonate reservoirs in Block Tahe 10[J]. Drilling Fluid & Completion Fluid, 2018, 35(5): 36–40.
|
[8] |
罗宇维,陈良,罗东辉,等. 深水高压井负压力窗口固井关键技术[J]. 中国海上油气, 2016, 28(4): 83–87.
LUO Yuwei, CHEN Liang, LUO Donghui, et al. Key technology for negative pressure-weindow cementing in high deep water well[J]. China Offshore Oil and Gas, 2016, 28(4): 83–87.
|
[9] |
董强,窦宏恩,鄢爱民. 挤水泥技术在委内瑞拉Caracoles油田的应用[J]. 天然气工业, 2004, 24(10): 59–61. doi: 10.3321/j.issn:1000-0976.2004.10.019
DONG Qiang, DOU Hongen, YAN Aimin. Application of cement squeeze technology in Caracoles Oil Field, Venezuela[J]. Natural Gas Industry, 2004, 24(10): 59–61. doi: 10.3321/j.issn:1000-0976.2004.10.019
|
[10] |
罗翰, 何世明, 罗德明. 川深1井超高温高压尾管固井技术[J]. 石油钻探技术, 2019, 47(4): 17–21.
LUO Han, HE Shiming, LUO Deming. Ultra-high temperature and high pressure liner cementing technology in Well Chuanshen 1[J]. Petroleum Drilling Techniques, 2019, 47(4): 17–21.
|
[11] |
姚晓, 葛荘, 汪晓静, 等. 加砂油井水泥石高温力学性能衰退机制研究进展[J]. 石油钻探技术, 2018, 46(1): 17–23. doi: 10.11911/syztjs.2018008
YAO Xiao, GE Zhuang, WANG Xiaojing, et al. Research progress of degradation of mechanical properties of sand-containing cement in high temperature regimes[J]. Petroleum Drilling Techniques, 2018, 46(1): 17–23. doi: 10.11911/syztjs.2018008
|
[12] |
潘国臣,刘锋,徐伟,等. 塔河油田严重漏失井挤水泥堵水工艺研究[J]. 钻采工艺, 2013, 36(2): 12–14. doi: 10.3969/J.ISSN.1006-768X.2013.02.04
PAN Guochen, LIU Feng, XU Wei, et al. Study on cement squeeze water plugging technology of the serious absorption well in Tahe Oilfield[J]. Drilling & Production Technology, 2013, 36(2): 12–14. doi: 10.3969/J.ISSN.1006-768X.2013.02.04
|
[13] |
王伟强,王义龙,张连进,等. 硅灰加入量对水泥结合铝硅浇注料性能的影响[J]. 工业炉, 2018, 40(2): 64–66. doi: 10.3969/j.issn.1001-6988.2018.02.017
WANG Weiqiang, WANG Yilong, ZHANG Lianjin, et al. Effect of the additions of Uf-SiO2 on properties of castables by combining alumina and silica with cement[J]. Industrial Furnace, 2018, 40(2): 64–66. doi: 10.3969/j.issn.1001-6988.2018.02.017
|
[14] |
丹美涵,于斌,罗宇维,等. 超高温水泥浆在乐东A井中的应用[J]. 内蒙古石油化工, 2017(7): 21–24. doi: 10.3969/j.issn.1006-7981.2017.07.008
DAN Meihan, YU Bin, LUO Yuwei, et al. Ultra high temperature cement slurry applied in cementing Well Ledong-A[J]. Inner Mongolia Petrochemical Industry, 2017(7): 21–24. doi: 10.3969/j.issn.1006-7981.2017.07.008
|
[15] |
苏勤,赵向阳. 一种精细控压钻井流动模型的研究与应用[J]. 石油钻探技术, 2013, 41(1): 8–13. doi: 10.3969/j.issn.1001-0890.2013.01.002
SU Qin, ZHAO Xiangyang. The research and application of a fine MPD flow model[J]. Petroleum Drilling Techniques, 2013, 41(1): 8–13. doi: 10.3969/j.issn.1001-0890.2013.01.002
|
1. |
许朝辉,查春青,范进朝,张谧. 复合脉冲钻井提速工具的设计及试验分析. 石油矿场机械. 2025(01): 1-5 .
![]() | |
2. |
陈东方,全兵,肖新启,张光宇,陈志华. 轴扭耦合冲击器结构设计与室内试验. 石油钻探技术. 2024(01): 78-83 .
![]() | |
3. |
刘义彬,黄峰,康建涛,周灏,季小娜,左岳. 近钻头旋扭冲击器结构设计与试验. 石油矿场机械. 2023(02): 28-33 .
![]() | |
4. |
叶道辉,陈东方,肖平,张锐尧,张光宇,秦菲. 同频异位式复合冲击器的研究开发与现场试验. 石油机械. 2023(06): 20-26 .
![]() | |
5. |
秦承帅,孙洪斌,李利平,刘学港,刘知辉,冯春,孙子正. 复合冲击作用下PDC钻齿破岩过程连续-非连续数值模拟研究. 煤田地质与勘探. 2023(09): 109-120 .
![]() | |
6. |
赵金成,陈杰,陈立伟,刘禹铭,柴龙顺,蒋畅. 国内外扭力冲击器的研究现状及展望. 机械工程师. 2022(05): 83-85 .
![]() | |
7. |
毛良杰,马茂原,刘立鹏,张伟,陈春宇. 扭力冲击器对钻柱黏滑振动的影响分析. 断块油气田. 2022(04): 545-551 .
![]() | |
8. |
王建云,韩涛,赵宽心,张立军,席宝滨,叶翔. 塔深5井超深层钻井关键技术. 石油钻探技术. 2022(05): 27-33 .
![]() | |
9. |
王建龙,柳鹤,于琛,郑锋,李亚锋,刘烁. 多功能振荡旋冲螺杆钻具研制与应用. 西部探矿工程. 2022(12): 49-52+55 .
![]() | |
10. |
赵建军,赵晨熙,崔晓杰,胡群爱. 减震稳扭旋冲钻井提速工具可变节流口特性分析. 机械科学与技术. 2021(04): 592-597 .
![]() | |
11. |
陈小元,严忠. 许X36A下扬子中深探井钻井施工技术. 复杂油气藏. 2021(01): 85-89+101 .
![]() | |
12. |
车继勇,谯正武,李明娜. 井下冲击钻井工具模拟试验装置研制. 石油矿场机械. 2021(03): 80-86 .
![]() | |
13. |
苏崭,王博,盖京明,李玮,赵欢,陈冰邓. 复合式扭力冲击器在坚硬地层中的应用. 中国煤炭地质. 2021(05): 47-50+57 .
![]() | |
14. |
赵建军,崔晓杰,曹海涛,赵晨熙. 高频液力扭转冲击钻井提速工具设计与分析. 机床与液压. 2021(14): 84-88 .
![]() | |
15. |
陈新勇,付潇,李亮亮,王颖瑞,李毅,吴红玲,张明. 廊固凹陷安探地区复杂深井钻井关键技术. 石油机械. 2021(12): 36-41 .
![]() | |
16. |
熊振宇,田壮壮,何阳子,崔强. 复合冲击器在西湖凹陷深部地层钻井中的应用. 海洋石油. 2021(04): 85-89 .
![]() | |
17. |
左宏刚,何福耀,严维锋,和鹏飞,张子明. 超深大位移井井筒清洁技术及工程实践. 石油化工应用. 2020(02): 92-97 .
![]() | |
18. |
陈新勇,韩煦,邱爱民,王秀影,梁晓勇,付凯,黄红亮. 扭力冲击器与螺杆钻具集成BHA应用研究. 石油机械. 2020(05): 34-38 .
![]() | |
19. |
刘伟吉,曾义金,祝效华,丁士东. 单齿复合冲击切削破岩机制及其与扭转冲击的对比. 中国石油大学学报(自然科学版). 2020(03): 74-80 .
![]() | |
20. |
罗恒荣,崔晓杰,谭勇,黎有炎,赵建军. 液力扭转冲击器配合液力加压器的钻井提速技术研究与现场试验. 石油钻探技术. 2020(03): 58-62 .
![]() | |
21. |
刘书斌,倪红坚,张恒,李宁. 多维冲击器钻井提速技术及应用. 石油机械. 2020(10): 44-50 .
![]() | |
22. |
韩飞,罗淮东,张全立,张林,王军,李庆. 扭力冲击器设计与仿真分析. 石油机械. 2019(03): 19-23 .
![]() | |
23. |
戴杰,冮鹏. 旋冲钻具技术特点与原理分析. 化工管理. 2019(09): 108-109 .
![]() | |
24. |
胡群爱,孙连忠,张进双,张俊,刘仕银. 硬地层稳压稳扭钻井提速技术. 石油钻探技术. 2019(03): 107-112 .
![]() | |
25. |
李相勇. 复合冲击钻井工具在深部难钻地层的应用. 西部探矿工程. 2019(08): 70-72 .
![]() | |
26. |
赵建军,崔晓杰,赵晨熙,胡亮,尹慧博,马兰荣. 高频液力扭力冲击器设计与试验研究. 石油化工应用. 2018(02): 5-10 .
![]() | |
27. |
黄家根,汪海阁,纪国栋,赵飞,明瑞卿,郝亚龙. 超声波高频旋冲钻井技术破岩机理研究. 石油钻探技术. 2018(04): 23-29 .
![]() | |
28. |
陈新勇,张苏,付潇,邱晓宁,马谢书,杨恺. 扭力冲击钻井工具模拟分析及现场试验. 石油机械. 2018(09): 29-32 .
![]() | |
29. |
梁奇敏,何俊才,张弘,张翼,刘新云. 钻井提速工具经济性预测评价方法. 石油钻探技术. 2017(03): 57-61 .
![]() | |
30. |
闫炎,管志川,玄令超,呼怀刚,庄立. 复合冲击条件下PDC钻头破岩效率试验研究. 石油钻探技术. 2017(06): 24-30 .
![]() |