Citation: | WANG Jianhua, YAN Lili, XIE Sheng, ZHANG Jiaqi, YANG Haijun. Oil-Based Drilling Fluid Technology for High Pressure Brine Layer in Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29-33. DOI: 10.11911/syztjs.2020007 |
High friction and stuck pipe have been persistent problems when drilling through the deep gypsum-salt layer of the Tarim piedmont structure. What has been observed is that invasion of high-pressure brine deteriorates the properties of high-density drilling fluid, resulting in those characteristic downhole complexities such as friction and sticking. Generally, the measure of drainage pressure relief is used to reduce the pressure of high pressure brine lens, but that poses higher requirement on the brine invasion resistance of oil-based drilling fluids. To solve the problem, a single-chain multi-cluster new emulsifier was developed to improve the emulsification efficiency by increasing the number of hydrophilic groups in the molecular structure of emulsifier, hence improving the brine invasion capacity limit of oil-based drilling fluids. The results of laboratory evaluation show that the density of oil-based drilling fluid system formed by this new emulsifier can be as high as 2.85 kg/L, the resistance to brine pollution is over 60%, and has good high-temperature stability. The oil-based drilling fluid technology applied in several ultra-deep wells drilling (including Well Keshen 1101). During the treatment, the properties of oil-based drilling fluid were stable, there was no pipe string stucking or other accidents caused by drilling fluids. Studies suggest that this oil-based drilling fluid system has good rheology, sedimentation stability and brine pollution resistance. It can handle mud contamination in the massive gypsum-salt layer or high-pressure brine formation of deep wells, and can be promoted and applied in the Kuqa piedmont drilling of the Tarim Oilfield.
[1] |
张跃,张博,吴正良,等. 高密度油基钻井液在超深复杂探井中的应用[J]. 钻采工艺, 2013, 36(6): 95–97. doi: 10.3969/J.ISSN.1006-768X.2013.06.28
ZHANG Yue, ZHANG Bo, WU Zhengliang, et al. Application of high density oil-base drilling fluid in Keshen well 7 of Tarim Oilfield[J]. Drilling & Production Technology, 2013, 36(6): 95–97. doi: 10.3969/J.ISSN.1006-768X.2013.06.28
|
[2] |
鄢捷年.钻井液工艺学[M].东营: 石油大学出版社, 2001: 57–88.
YAN Jienian. Drilling fluid technology[M]. Dongying: Petroleum University Press, 2001: 57–88.
|
[3] |
周健,贾红军,刘永旺,等. 库车山前超深超高压盐水层安全钻井技术探索[J]. 钻井液与完井液, 2017, 34(1): 54–59. doi: 10.3969/j.issn.1001-5620.2017.01.010
ZHOU Jian, JIA Hongjun, LIU Yongwang, et al. Research on safe drilling technology for ultra deep ultrahigh pressure saltwater zones in piedmont area, Kuche[J]. Drilling Fluid & Completion Fluid, 2017, 34(1): 54–59. doi: 10.3969/j.issn.1001-5620.2017.01.010
|
[4] |
尹达,叶艳,李磊,等. 塔里木山前构造克深7井盐间高压盐水处理技术[J]. 钻井液与完井液, 2012, 29(5): 6–8. doi: 10.3969/j.issn.1001-5620.2012.05.002
YIN Da, YE Yan, LI Lei, et al. High pressure salt water treatment technology of Well Keshen 7 in Foothill Structural Zone of Tarim[J]. Drilling Fluid & Completion Fluid, 2012, 29(5): 6–8. doi: 10.3969/j.issn.1001-5620.2012.05.002
|
[5] |
卢俊安,王春生,冯少波,等. 超高压盐水溢流处置技术[J]. 钻采工艺, 2017, 40(5): 5–7. doi: 10.3969/J.ISSN.1006-768X.2017.05.02
LU Jun’an, WANG Chunsheng, FENG Shaobo, et al. Disposal measures for ultra-high-pressure brine overflow[J]. Drilling & Production Technology, 2017, 40(5): 5–7. doi: 10.3969/J.ISSN.1006-768X.2017.05.02
|
[6] |
李悦,李玮,谢天,等. BH-WEI抗三高钻井液技术在克深2-1-14井的应用[J]. 当代化工, 2016, 45(4): 773–775. doi: 10.3969/j.issn.1671-0460.2016.04.035
LI Yue, LI Wei, XIE Tian, et al. Application of BH-WEI three-high drilling fluid in Well Keshen 2-1-14[J]. Contemporary Chemical Industry, 2016, 45(4): 773–775. doi: 10.3969/j.issn.1671-0460.2016.04.035
|
[7] |
王中华. 国内钻井液技术进展评述[J].石油钻探技术, 2019, 47(3): 95–102.
WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3): 95–102.
|
[8] |
谢海龙. 塔里木山前构造复杂地质条件下的钻井液技术在大古一井的应用[J]. 钻采工艺, 2008, 31(1): 135–137. doi: 10.3969/j.issn.1006-768X.2008.01.045
XIE Hailong. Application of high density mud in Well DG-1 in Tarim Mountain Front[J]. Drilling & Production Technology, 2008, 31(1): 135–137. doi: 10.3969/j.issn.1006-768X.2008.01.045
|
[9] |
TENG X, YANG P, LI N, et al. Successful HPHT drilling through innovative practices: sharing the subsalt HPHT well drilling case in Tarim Basin[R]. SPE 172782, 2015.
|
[10] |
WANG Jianhua, YAN Lili, LIU Fengbao, et al. Treatment technology of brine contamination and barite settlement for the high temperature and high density OBM for ultra-deep well drilling in Western China[R]. IPTC 19543, 2019.
|
[11] |
周健,刘永旺,贾红军,等. 库车山前巨厚盐膏层提速技术探索与应用[J]. 钻采工艺, 2017, 40(1): 21–24. doi: 10.3969/J.ISSN.1006-768X.2017.01.06
ZHOU Jian, LIU Yongwang, JIA Hongjun, et al. Study to improve rop in thick salt-gypsum layers at Kuqa Piedmont Area[J]. Drilling & Production Technology, 2017, 40(1): 21–24. doi: 10.3969/J.ISSN.1006-768X.2017.01.06
|
[1] | LI Zhankui, WU Liwei, GUO Mingyu, XU Kun, MA Fugang, LI Wenlong. Research and Application of Integrated Geological Engineering Technology for Deep High-Pressure Wells in the Bozhong Sag[J]. Petroleum Drilling Techniques, 2024, 52(2): 194-201. DOI: 10.11911/syztjs.2024031 |
[2] | PENG Fen, ZHANG Bao, YANG Pengcheng, XUE Haonan, PENG Jianxin, SHENG Zhimin. Vertical Subdivision Layer Stimulation Technology for Ultra-Deep and Super-Thick Tight Sandstone in Kuqa Piedmont[J]. Petroleum Drilling Techniques, 2024, 52(2): 187-193. DOI: 10.11911/syztjs.2023113 |
[3] | AO Kangwei, TU Siqi, YANG Kunpeng, XIA Yuanbo, ZENG Jianguo. Cementing Technologies with Large-Size Casing in the Kuqa Piedmont[J]. Petroleum Drilling Techniques, 2022, 50(6): 85-91. DOI: 10.11911/syztjs.2022042 |
[4] | LAN Kunxiang, ZHANG Xingguo, AI Zhengqing, YUAN Zhongtao, XU Liqun, LIU Zhongfei. Research on the Rheological Properties of Drilling Fluids in Annular Spacefor Cementing at Low Shear Rates in Kuqa Piedmont[J]. Petroleum Drilling Techniques, 2021, 49(6): 55-61. DOI: 10.11911/syztjs.2021058 |
[5] | WANG Dong, LAI Xueming, TANG Qing, ZHOU Junjie. Technologies for Snubbing Services in Horizontal Shale Oil Wells in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 150-154. DOI: 10.11911/syztjs.2021077 |
[6] | LIU Tianen, ZHANG Haijun, YUAN Guangjie, LI Guotao, YIN Qiwu, CHEN Fei. Optimized and Fast Drilling Technologies for Horizontal Shale Oil Wells in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 46-52. DOI: 10.11911/syztjs.2020127 |
[7] | WANG Kelin, LIU Hongtao, HE Wen, HE Xinxing, GAO Wenxiang, SHAN Feng. Failure Control of Completion Packer in the High Temperature and High Pressure Gas Well of Kuqa Piedmont Structure[J]. Petroleum Drilling Techniques, 2021, 49(2): 61-66. DOI: 10.11911/syztjs.2020128 |
[8] | LIU Wei, ZHOU Yingcao, SHI Xitian, WANG Ying, LEI Wanneng, LI Mu. Precise Managed Pressure Drilling Technology for Ultra-High Pressure Brine Layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23-28. DOI: 10.11911/syztjs.2020034 |
[9] | Jiang Jinbao. Big Size Bit Design Field Test for Gravel Layer in Piedmont Structure[J]. Petroleum Drilling Techniques, 2013, 41(4): 69-72. DOI: 10.3969/j.issn.1001-0890.2013.04.015 |
[10] | Zhu Zhongxi, Liu Yingbiao, Lu Zongyu, Xiong Xudong. Increasing the Penetration Rate for Piedmont Belt of Junggar Basin[J]. Petroleum Drilling Techniques, 2013, 41(2): 34-38. DOI: 10.3969/j.issn.1001-0890.2013.02.007 |
1. |
考佳玮,杨康,谭鹏,陈作. 干热岩储层裂缝扩展及采热一体化数值模型. 吉林大学学报(地球科学版). 2025(02): 575-586 .
![]() | |
2. |
邹剑,兰夕堂,高尚,符杨洋,张丽平,代磊阳. 示踪剂裂缝监测技术在气藏水平井压裂中的应用. 精细与专用化学品. 2024(02): 20-23 .
![]() | |
3. |
刘汉青,胡才博,赵桂萍. 增强地热系统停止运行后温度恢复过程的数值模拟. 中国科学院大学学报. 2024(02): 222-230 .
![]() | |
4. |
陈作,赵乐坤,卫然,刘星. 深层地热热储改造技术进展与发展建议. 石油钻探技术. 2024(06): 10-15 .
![]() | |
5. |
刘汉青,胡才博,赵桂萍,石耀霖. 利用热-孔隙流体耦合有限元数值模拟研究干热岩开发温度下降过程——以青海共和盆地恰卜恰地区干热岩开发为例. 地球物理学报. 2023(07): 2887-2902 .
![]() | |
6. |
王旭,刘得军,吴世伟,李洋,翟颖. 基于大地电磁监测方法的水力裂缝响应模拟. 石油钻探技术. 2023(06): 115-119 .
![]() | |
7. |
张德龙,郭强,杨鹏,卢彤,吴烁,翁炜,刘宝林. 地热井花岗岩地层钻进提速技术研究与应用进展. 地质与勘探. 2022(05): 1082-1090 .
![]() |