Citation: | PENG Fen, ZHANG Bao, YANG Pengcheng, et al. Vertical subdivision layer stimulation technology for ultra-deep and super-thick tight sandstone in Kuqa Piedmont [J]. Petroleum Drilling Techniques,2024, 52(2):187-193. DOI: 10.11911/syztjs.2023113 |
The Cretaceous system in Kuqa Piedmont of Tarim Oilfield is a super-deep and super-thick fractured tight sandstone with developed natural fractures and strong heterogeneity. The gas production profile test of stimulated wells shows that the conventional general stimulation of vertical thick reservoirs is not sufficient, and the production capacity is not completely released. In order to solve these problems, layered fracturing technology can be implemented for wells with large reservoir thicknesses and obvious interlayers, which can also enhance the performance of vertical stimulation. A set of fine identification methods for multi-scale fractures of near and far wells was established by using multi-logging data through engineering and geology integration research. Based on the relationship between lost circulation and production, a set of reservoir evaluation classification methods was established, which comprehensively considered the structural location, lost circulation in drilling, fracture development, mechanical activity, and other data. Through fine mechanical checking of double packer pipe string, expansion pipe was added, and the grain size of temporary plugging material was optimized, forming a soft and hard layered fracturing technology featuring “mechanical + temporary plugging”, thus realizing the highly efficient production of the super-thick reservoir. The technology was applied to 20 wells, and the production of a single well was increased from 6.7×104 m3/d to 34.0×104 m3/d after stimulation, with the production remarkably increasing by four times on average. The technology provides strong technical support for the efficient development of super-thick tight sandstone reservoirs.
[1] |
王俊鹏,曾联波,周露,等. 塔里木盆地克拉苏构造带超深层储层裂缝发育模式及开发意义[J]. 地球科学,2023,48(7):2520–2534.
WANG Junpeng, ZENG Lianbo, ZHOU Lu, et al. Development model of natural fractures in ultra-deep sandstone reservoirs with low porosity in Kelasu Tectonic Belt, Tarim Basin[J]. Earth Science, 2023, 48(7): 2520–2534.
|
[2] |
江同文,孙雄伟. 库车前陆盆地克深气田超深超高压气藏开发认识与技术对策[J]. 天然气工业,2018,38(6):1–9. doi: 10.3787/j.issn.1000-0976.2018.06.001
JIANG Tongwen, SUN Xiongwei. Development of Keshen ultra-deep and ultra-high pressure gas reservoirs in the Kuqa foreland basin, Tarim Basin: understanding points and technical countermeasures[J]. Natural Gas Industry, 2018, 38(6): 1–9. doi: 10.3787/j.issn.1000-0976.2018.06.001
|
[3] |
王振彪,孙雄伟,肖香姣. 超深超高压裂缝性致密砂岩气藏高效开发技术:以塔里木盆地克拉苏气田为例[J]. 天然气工业,2018,38(4):87–95.
WANG Zhenbiao, SUN Xiongwei, XIAO Xiangjiao. Efficient development technologies for ultradeep, overpressured and fractured sandstone gas reservoirs: a cased study of the Kelasu Gas Field in the Tarim Basin[J]. Natural Gas Industry, 2018, 38(4): 87–95.
|
[4] |
刘群明,唐海发,吕志凯,等. 超深层气藏裂缝发育模式及水侵规律:以塔里木盆地克深2、9、8气藏为例[J]. 天然气地球科学,2023,34(6):963–972.
LIU Qunming, TANG Haifa, LYU Zhikai, et al. Study on gas-water distribution and water invasion law under different fracture development models in ultra-deep gas reservoir: taking Keshen 2, 9 and 8 gas reservoirs of Tarim Basin as examples[J]. Natural Gas Geoscience, 2023, 34(6): 963–972.
|
[5] |
赵炜. 煤系气藏多层合采井口产量变化规律实验研究[D]. 北京:中国石油大学(北京),2020.
ZHAO Wei. Experimental study on the change rule of multilayer combined-production wellhead in coal measure gas reservoir[D]. Beijing: China University of Petroleum(Beijing), 2020.
|
[6] |
常玉翠. 煤储层和致密层耦合产气机理及合采效果评价[D]. 北京:中国石油大学(北京),2019.
CHANG Yucui. Mechanism and effect evaluation of commingled production of CBM reservoir and tight gas reservoir[D]. Beijing: China University of Petroleum(Beijing), 2019.
|
[7] |
彭永洪,陈飞,李彦召,等. 库车山前大斜度井储层改造试验与认识[J]. 钻采工艺,2021,44(3):33–36.
PENG Yonghong, CHEN Fei, LI Yanzhao, et al. Experiment and cognition of reservoir stimulation in highly-deviated well in Kuqa foreland basin[J]. Drilling & Production Technology, 2021, 44(3): 33–36.
|
[8] |
黄有泉,王金友,张宏岩,等. 大庆油田ϕ100 mm套损井精细压裂工艺技术[J]. 石油钻采工艺,2022,44(5):618–622.
HUANG Youquan, WANG Jinyou, ZHANG Hongyan, et al. Fine fracturing technology for ϕ100 mm casing damaged wells in Daqing Oilfield[J]. Oil Drilling & Production Technology, 2022, 44(5): 618–622.
|
[9] |
翁定为,杨战伟,任登峰,等. 提高超深裂缝性储层改造体积技术研究及应用[J]. 世界石油工业,2023,30(4):55–62.
WENG Dingwei, YANG Zhanwei, REN Dengfeng, et al. Application and improvement of ultra-deep fractured reservoir stimulated volume technology[J]. World Petroleum Industry, 2023, 30(4): 55–62.
|
[10] |
雷群,杨战伟,翁定为,等. 超深裂缝性致密储集层提高缝控改造体积技术:以库车山前碎屑岩储集层为例[J]. 石油勘探与开发,2022,49(5):1012–1024.
LEI Qun, YANG Zhanwei, WENG Dingwei, et al. Techniques for improving fracture-controlled stimulated reservoir volume in ultra-deep fractured tight reservoirs: a case study of Kuqa piedmont clastic reservoirs, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(5): 1012–1024.
|
[11] |
毛哲,曾联波,刘国平,等. 准噶尔盆地南缘侏罗系深层致密砂岩储层裂缝及其有效性[J]. 石油与天然气地质,2020,41(6):1212–1221.
MAO Zhe, ZENG Lianbo, LIU Guoping, et al. Characterization and effectiveness of natural fractures in deep tight sandstones at the south margin of the Junggar Basin, northwestern China[J]. Oil & Gas Geology, 2020, 41(6): 1212–1221.
|
[12] |
YANG Xiangtong, PAN Yuanwei, FAN Wentong, et al. Case study: 4D reservoir geomechanics simulation of an HP/HT naturally fractured reservoir[R]. SPE 187606, 2017.
|
[13] |
祁晓,张璋,李东,等. 基于阵列声波测井技术的海上砂岩储层压裂效果评价方法[J]. 石油钻探技术,2023,51(6):128–134.
QI Xiao, ZHANG Zhang, LI Dong, et al. Evaluation of fracturing effects in offshore sandstone reservoirs based on array acoustic logging technology[J]. Petroleum Drilling Techniques, 2023, 51(6): 128–134.
|
[14] |
蔡明,章成广,韩闯,等. 微裂缝对横波衰减影响的实验研究及其在致密砂岩裂缝评价中的应用[J]. 中国石油大学学报(自然科学版),2020,44(1):45–52.
CAI Ming, ZHANG Chengguang, HAN Chuang, et al. Experimental research of effect of microfracture on shear wave attenuation and its application on fracture evaluation in tight sand formation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(1): 45–52.
|
[15] |
赖锦,王贵文,孙思勉,等. 致密砂岩储层裂缝测井识别评价方法研究进展[J]. 地球物理学进展,2015,30(4):1712–1724.
LAI Jin, WANG Guiwen, SUN Simian, et al. Research advances in logging recognition and evaluation method of fractures in tight sandstone reservoirs[J]. Progress in Geophysics, 2015, 30(4): 1712–1724.
|
[16] |
谢海龙. 塔里木山前构造复杂地质条件下的钻井液技术在大古一井的应用[J]. 钻采工艺,2008,31(1):135–137.
XIE Hailong. Application of high density mud in Well DG-1 in Tarim mountain front[J]. Drilling & Production Technology, 2008, 31(1): 135–137.
|
[17] |
陈雪峰,李博,张晓兵,等. 塔里木山前构造盐膏层随钻扩眼钻井技术应用与认识[J]. 西部探矿工程,2022,34(9):96–99.
CHEN Xuefeng, LI Bo, ZHANG Xiaobing, et al. Application and understanding of drilling while drilling technology for salt gypsum layer in Tarim piedmont structure[J]. West-China Exploration Engineering, 2022, 34(9): 96–99.
|
[18] |
侯冰,陈勉,卢虎,等. 库车山前下第三系漏失原因分析及堵漏方法[J]. 石油钻采工艺,2009,31(4):40–44.
HOU Bing, CHEN Mian, LU Hu, et al. Cause analysis of lost circulation and plugging method in Paleogene of Kuqa piedmont structure[J]. Oil Drilling & Production Technology, 2009, 31(4): 40–44.
|
[19] |
HUANG Jinsong, GRIFFITHS D V, WONG Sau-Wai. Characterizing natural-fracture permeability from mud-loss data[J]. SPE Journal, 2011, 16(1): 111–114.
|
[20] |
许闿麟. 碳酸盐岩裂缝—孔隙性地层钻井液漏失模型[J]. 特种油气藏,2016,23(6):133–135.
XU Kailin. Mud loss model in carbonate fracture-pore formation[J]. Special Oil & Gas Reservoirs, 2016, 23(6): 133–135.
|
[21] |
孙致学,姜宝胜,肖康,等. 基于新型集成学习算法的基岩潜山油藏储层裂缝开度预测算法[J]. 油气地质与采收率,2020,27(3):32–38.
SUN Zhixue, JIANG Baosheng, XIAO Kang, et al. Prediction of fracture aperture in bedrock buried hill oil reservoir based on novel ensemble learning algorithm[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3): 32–38.
|
[22] |
邹国庆,熊勇富,袁孝春,等. 低孔裂缝性致密储层暂堵转向酸压技术及应用[J]. 钻采工艺,2014,37(5):66–68.
ZOU Guoqing, XIONG Yongfu, YUAN Xiaochun, et al. Temporary plugging and diverting acid fracturing technology and its application in low porosity and fractured reservoir[J]. Drilling & Production Technology, 2014, 37(5): 66–68.
|
[23] |
刘豇瑜,张亚红,张晖,等. 高强度纤维复合暂堵剂试验研究及现场应用[J]. 石化技术,2017,24(8):101–104.
LIU Jiangyu, ZHANG Yahong, ZHANG Hui, et al. Experimental research and application of high strength fiber composite plugging agent[J]. Petrochemical Industry Technology, 2017, 24(8): 101–104.
|
1. |
刘惠民,王敏生,李中超,陈宗琦,艾昆,王运海,毛怡,闫娜. 中国页岩油勘探开发面临的挑战与高效运营机制研究. 石油钻探技术. 2024(03): 1-10 .
![]() | |
2. |
杨勇,张世明,吕琦,李伟忠,蒋龙,刘祖鹏,吕晶,任敏华,路广. 济阳坳陷古近系沙四段——沙三段页岩油立体评价探索与实践. 中国石油勘探. 2024(03): 31-44 .
![]() | |
3. |
李阳,曹小朋,赵清民,刘祖鹏,薛兆杰,蒋龙. 济阳坳陷陆相断陷盆地页岩油开发的几点思考. 石油钻探技术. 2024(04): 1-7 .
![]() | |
4. |
吴壮坤,张宏录,池宇璇. 苏北页岩油二氧化碳强压质换技术. 石油钻探技术. 2024(04): 87-93 .
![]() | |
5. |
秦春,刘纯仁,李玉枝,王治国,陈文可. 苏北断块页岩油水平井钻井提速关键技术. 石油钻探技术. 2024(06): 30-36 .
![]() | |
6. |
郭同政,张晋言,柴婧,包博婷,孙建孟. 基于测录井资料计算页岩含油饱和度与气油比的方法. 石油钻探技术. 2023(03): 126-136 .
![]() | |
7. |
张莉娜,任建华,胡春锋. 常压页岩气立体开发特征及缝网干扰规律研究. 石油钻探技术. 2023(05): 149-155 .
![]() | |
8. |
张矿生,齐银,薛小佳,陶亮,陈文斌,武安安. 鄂尔多斯盆地页岩油水平井CO_2区域增能体积压裂技术. 石油钻探技术. 2023(05): 15-22 .
![]() | |
9. |
朱海燕,焦子曦,刘惠民,周广清,王建东,张潦源. 济阳坳陷陆相页岩油气藏组合缝网高导流压裂关键技术. 天然气工业. 2023(11): 120-130 .
![]() | |
10. |
迟建功. 大庆古龙页岩油水平井钻井技术. 石油钻探技术. 2023(06): 12-17 .
![]() |