GENG Lidong, WANG Minsheng, JIANG Haijun, GUANG Xinjun. The Status of the Development of Graphene Applications in Petroleum Engineering[J]. Petroleum Drilling Techniques, 2019, 47(5): 80-85. DOI: 10.11911/syztjs.2019108
Citation: GENG Lidong, WANG Minsheng, JIANG Haijun, GUANG Xinjun. The Status of the Development of Graphene Applications in Petroleum Engineering[J]. Petroleum Drilling Techniques, 2019, 47(5): 80-85. DOI: 10.11911/syztjs.2019108

The Status of the Development of Graphene Applications in Petroleum Engineering

More Information
  • Received Date: February 10, 2019
  • Revised Date: August 20, 2019
  • Available Online: August 27, 2019
  • Graphene has become a hot research topic at home and abroad because of its unique physical and chemical properties, but its research and application in petroleum engineering are still in its infancy. In order to promote the rapid development and wide application of graphene and its derivatives in petroleum engineering, the excellent physical and chemical properties of graphene and its derivatives were introduced. An analysis of the current state of graphene research and application of graphene looked at five aspects: oil and gas exploration technology, downhole tools, downhole fluids, enhanced oil recovery (EOR) and oil-water separation technology. Finally, recommendations were made for additional research into graphene in petroleum engineering. It is recommended that the research on the key technologies mentioned above should be carried out, so as to further strengthen the basic theoretical research, and extend the application range of graphene in petroleum engineering, accelerate the large-scale popularization and application of graphene in the oil and gas industry, and provide reference for guiding the new technological revolution in the oil and gas industry and facilitating the economic and efficient development of China's oil and gas resources.

  • [1]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896
    [2]
    胡明明,赵高峰. 锂改性点缺陷石墨烯储氢性能的第一性原理研究[J]. 原子与分子物理学报, 2019, 36(3): 443–451. doi: 10.3969/j.issn.1000-0364.2019.03.013

    HU Mingming, ZHAO Gaofeng. The hydrogen storage properties of lithium decorated point defect in graphene: a theoretical study[J]. Journal of Atomic and Molecular Physics, 2019, 36(3): 443–451. doi: 10.3969/j.issn.1000-0364.2019.03.013
    [3]
    武思蕊,李斌,李覃,等. 石墨烯基柔性薄膜复合材料及其功能化的研究进展[J]. 高分子材料科学与工程, 2019, 35(1): 176–182.

    WU Sirui, LI Bin, LI Qin, et al. Progress in graphene based flexible film composite and its functionalization[J]. Polymer Materials Science and Engineering, 2019, 35(1): 176–182.
    [4]
    史氾平. 基于半导体量子点和石墨烯量子点的功能性荧光纳米生物传感器的构建及在生物医学分析中的应用[D]. 长春: 吉林大学, 2017.

    SHI Fanping. Functionalized flurescencenano-biosensors based on semiconductor quantum dots and graphene quantum dots and their application in biomedical and analytical field [D]. Changchun: Jilin University, 2017.
    [5]
    CHENG Qunfeng, WU Mengxi, LI Mingzhu, et al. Ultratough artificial nacre based on conjugated cross-linked graphene oxide[J]. Angewandte Chemie(International Edition), 2013, 52(13): 3750–3755. doi: 10.1002/anie.201210166
    [6]
    闫昕,梁兰菊,张璋,等. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控[J]. 物理学报, 2018, 67(11): 253–264.

    YAN Xin, LIANG Lanju, ZHANG Zhang, et al. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial[J]. Acta Physica Sinica, 2018, 67(11): 253–264.
    [7]
    胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探, 2017, 22(1): 1–5. doi: 10.3969/j.issn.1672-7703.2017.01.001

    HU Wenrui. Geology-engineering integration: a necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017, 22(1): 1–5. doi: 10.3969/j.issn.1672-7703.2017.01.001
    [8]
    HOELSCHER K P, STEFANO G D, RILEY M, et al. Application of nanotechnology in drilling fluids[R]. SPE 157031, 2012.
    [9]
    QIN Zhao, JUNG G S, KANG M J, et al. The mechanics and design of a lightweight three-dimensional graphene assembly[J]. Science Advances, 2017, 3(1): e1601536. doi: 10.1126/sciadv.1601536
    [10]
    DREYER D R, PARK S J, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39: 228–240. doi: 10.1039/B917103G
    [11]
    CRACIUN M F, RUSSO S, YAMAMOTO M, et al. Tuneable electronic properties in graphene[J]. NanoToday, 2011, 6(1): 42–60. doi: 10.1016/j.nantod.2010.12.001
    [12]
    罗海燕,周靖,张燕娟,等. 氧化石墨烯的制备及其对罗丹明B的吸附性能[J]. 化工新型材料, 2019, 47(1): 172–176.

    LUO Haiyan, ZHOU Jing, ZHANG Yanjuan, et al. Preparation of graphene oxide and its adsorption for rhodamine B[J]. New Chemical Materials, 2019, 47(1): 172–176.
    [13]
    NEUBERGER N, ADIDHARMA H, FAN Maohong. Graphene: a review of applications in the petroleum industry[J]. Journal of Petroleum Science and Engineering, 2018, 167: 152–159. doi: 10.1016/j.petrol.2018.04.016
    [14]
    BHONGALE S G, GAZDA J, SAMSON E M. Graphene barriers on waveguides, WO/2016/068952 [P]. 2016-05-06.
    [15]
    LI Cheng, GAO Xiangyang, GUO Tingting, et al. Analyzing the applicability of miniature ultra-high sensitivity Fabry-Perot acoustic sensor using a nano thick graphene diaphragm[J]. Measurement Science and Technology, 2015, 26(8): 122–130.
    [16]
    MA Jun, JIN Wei, HO H L. High-sensitivity fiber-tip pressure sensor with graphene diaphragm[J]. Optics Letters, 2012, 37(13): 2493–2495. doi: 10.1364/OL.37.002493
    [17]
    MA Jun, XUAN Haifeng, HO H L, et al. Fiber-Optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm[J]. Photonics Technology Letters, 2013, 25(10): 932–935. doi: 10.1109/LPT.2013.2256343
    [18]
    GENORIO B, PENG Zhiwei, LU Wei, et al. Synthesis of dispersible ferromagnetic graphene nanoribbon stacks with enhanced electrical percolation properties in a magnetic field[J]. ACS Nano, 2012, 6(11): 10396–10404. doi: 10.1021/nn304509c
    [19]
    CHAKRABORTY S, DIGIOVANNI A A, AGRAWAL G, et al. Graphene-coated diamond particles and compositions and intermediate structures comprising same, US 201113283021 [P]. 2011-10-27.
    [20]
    KESHAVAN M K, ZHANG Youhe, SHEN Yuelin, et al. Polycrystalline diamond materials having improved abrasion resistance, thermal stability and impact resistance, US 201414507590 [P]. 2014-10-06.
    [21]
    Ocsial Company. Drilling speed increased by 20%: yet another upgrade in the oil & gas sector made possible by graphene nanotubes[OL]. [2019-01-14].https://ocsial.com/en/news/340/.
    [22]
    JAMROZIK A. Graphene and graphene oxide in the oil and gas industry[J]. AGH Drilling, Oil, Gas, 2017, 34(3): 731–744.
    [23]
    宣扬,蒋官澄,黎凌,等. 高性能纳米降滤失剂氧化石墨烯的研制与评价[J]. 石油学报, 2013, 34(5): 1010–1016. doi: 10.7623/syxb201305025

    XUAN Yang, JIANG Guancheng, LI Ling, et al. Preparation and evaluation of nano-graphene oxide as a high-performance fluid loss additive[J]. Acta Petrolei Sinica, 2013, 34(5): 1010–1016. doi: 10.7623/syxb201305025
    [24]
    王琴,王健,吕春祥,等. 氧化石墨烯水泥浆体流变性能的定量化研究[J]. 新型炭材料, 2016, 31(6): 574–583.

    WANG Qin, WANG Jian, LYU Chunxiang, et al. Rheological behavior of fresh cement pastes with a graphene oxide additive[J]. New Carbon Materials, 2016, 31(6): 574–583.
    [25]
    AFTAB A, ISMAIL A R, IBUPOTO Z H. Enhancing the rheological properties and shale inhibition behavior of water-based mud using nanosilica, multi-walled carbon nanotube, and graphene nanoplatelet[J]. Egyptian Journal of Petroleum, 2017, 26(2): 291–299. doi: 10.1016/j.ejpe.2016.05.004
    [26]
    赵磊,蔡振兵,张祖川,等. 石墨烯作为润滑油添加剂在青铜织构表面的摩擦磨损行为[J]. 材料研究学报, 2016, 30(1): 57–62. doi: 10.11901/1005.3093.2015.082

    ZHAO Lei, CAI Zhenbing, ZHANG Zuchuan, et al. Tribological properties of graphene as effective lubricant additive in oil on textured bronze surface[J]. Chinese Journal of Materials Research, 2016, 30(1): 57–62. doi: 10.11901/1005.3093.2015.082
    [27]
    TAHA N M, LEE S. Nano graphene application improving drilling fluids performance [R]. IPTC-18539, 2015.
    [28]
    LUO Dan, WANG Feng, ZHU Jingyi, et al. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration[J]. PANS, 2016, 113(28): 7711–7716. doi: 10.1073/pnas.1608135113
    [29]
    袁路路.石墨烯负载镍、钴纳米复合材料的制备及其在稠油催化降粘中的应用研究[D].开封: 河南大学, 2017.

    YUAN Lulu. Preparation of graphene-supported nickel-cobalt nano-composites and their application in viscosity reduction of heavy oil[D]. Kaifeng: Henan University, 2017.
    [30]
    ELSHAWAF M. Investigation of graphene oxide nanoparticles effect on heavy oil viscosity [R]. SPE 194037, 2018.
    [31]
    贾海鹏,苏勋家,侯根良,等. 石墨烯基磁性纳米复合材料的制备与微波吸收性能研究进展[J]. 材料工程, 2013, 41(5): 89–93, 100. doi: 10.3969/j.issn.1001-4381.2013.05.018

    JIA Haipeng, SU Xunjia, HOU Genliang, et al. Progress in fabrication and microwave absorption capacity of graphene-based magnetic nanocomposites[J]. Journal of Materials Engineering, 2013, 41(5): 89–93, 100. doi: 10.3969/j.issn.1001-4381.2013.05.018
    [32]
    YANG Sudong, CHEN Lin, WANG Chunchun, et al. Surface roughness induced superhydrophobicity of graphene foam for oil-water separation[J]. Journal of Colloid and Interface Science, 2017, 508: 254–262. doi: 10.1016/j.jcis.2017.08.061
    [33]
    邱丽娟,张颖,刘帅卓,等. 超疏水、高强度石墨烯油水分离材料的制备及应用[J]. 高等学校化学学报, 2018, 39(12): 2758–2766. doi: 10.7503/cjcu20180332

    QIU Lijuan, ZHANG Ying, LIU Shuaizhuo, et al. Preparation and application of superhydrophobic and robust graphene composites oil/water separation material[J]. Chemical Journal of Chinese Universities, 2018, 39(12): 2758–2766. doi: 10.7503/cjcu20180332
  • Related Articles

    [1]HUANG Zhe, ZHANG Weiqiang, WU Zhonghua. Status and Development Trend of Digital Bit Technologies[J]. Petroleum Drilling Techniques, 2024, 52(5): 124-129. DOI: 10.11911/syztjs.2024086
    [2]WANG Zhonghua. Current Situation and Development Suggestions for Drilling Fluid Technologies in China[J]. Petroleum Drilling Techniques, 2023, 51(4): 114-123. DOI: 10.11911/syztjs.2023028
    [3]JIANG Tingxue, WANG Haitao. The Current Status and Development Suggestions for Sinopec’s Staged Fracturing Technologies of Horizontal Shale Oil Wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 14-21. DOI: 10.11911/syztjs.2021071
    [4]CHEN Zuo, LIU Honglei, LI Yingjie, SHEN Ziqi, XU Guoqing. The Current Status and Development Suggestions for Shale Oil Reservoir Stimulation at Home and Abroad [J]. Petroleum Drilling Techniques, 2021, 49(4): 1-7. DOI: 10.11911/syztjs.2021081
    [5]GENG Lidong. Application Status and Development Suggestions of Big Data Technology in Petroleum Engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72-78. DOI: 10.11911/syztjs.2020134
    [6]HE Yongming, XIE Wangyang, CHEN Xianchao. The Current Situation and Suggestions for Water-Soluble Gas Development Technology at Home and Abroad[J]. Petroleum Drilling Techniques, 2021, 49(2): 1-8. DOI: 10.11911/syztjs.2020121
    [7]SONG Xianzhi, XU Fuqiang, SONG Guofeng. Technical Status and Development Suggestions in Exploiting Geothermal Energy from Abandoned Wells[J]. Petroleum Drilling Techniques, 2020, 48(6): 1-7. DOI: 10.11911/syztjs.2020120
    [8]REN Hong. Current Status and Development Recommendations for Gas Hydrate Sampling Technology in the South China Sea[J]. Petroleum Drilling Techniques, 2020, 48(4): 89-93. DOI: 10.11911/syztjs.2020045
    [9]YUAN Guangjie, ZHANG Hong, JIN Gentai, XIA Yan. Current Status and Development Suggestions in Drilling and Completion Technology of Underground Gas Storage in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 1-7. DOI: 10.11911/syztjs.2020041
    [10]MA Kaihua, HOU Lizhong, ZHANG Hongbao. Drilling Completion Technologies of Sinopec Overseas Oilfields: Status Quo of Technology Development Suggestions[J]. Petroleum Drilling Techniques, 2018, 46(5): 1-7. DOI: 10.11911/syztjs.2018128
  • Cited by

    Periodical cited type(28)

    1. 杨清纯,山丽洁,王伟,赵新波,李亚龙,张立松. 基于Rosenbluthe改进方法的地层坍塌压力不确定性分析. 石油物探. 2025(01): 187-198 .
    2. 易浩,郭挺,孙连忠. 顺北油气田二叠系火成岩钻井技术研究与应用. 钻探工程. 2024(01): 131-138 .
    3. 刘岩生,张佳伟,黄洪春. 中国深层—超深层钻完井关键技术及发展方向. 石油学报. 2024(01): 312-324 .
    4. 何龙,何新星,张玉胜,严焱诚,刘伟,朱礼平. 川南下寒武统筇竹寺组井研—犍为地区瘦身井优化评价研究. 西南石油大学学报(自然科学版). 2024(06): 155-164 .
    5. 杨树东,武兴勇,钟震,宋琳. 新疆油田某区块井身结构优化设计与应用. 广东化工. 2023(04): 129-131 .
    6. 李双贵,罗江,于洋,汤明,易浩,曾德智. 顺北5号断裂带南部压力剖面建立及井身结构优化. 石油钻探技术. 2023(01): 9-15 . 本站查看
    7. 褚清琳,温炜,焦超. 顺北油气田高温定向井循环降温控制方法. 中国石油和化工标准与质量. 2023(06): 137-138 .
    8. 王刚,刘刚,王锴,李祎宸,常子昂,孔得臣. 油气井下套管遇阻研究现状与展望. 科学技术与工程. 2023(11): 4475-4486 .
    9. 王逸,陈超,董小虎,宋泓钢. 顺北油气田钻遇局部异常高压的认识及对策. 西部探矿工程. 2023(10): 57-60 .
    10. 马永生,蔡勋育,云露,李宗杰,李慧莉,邓尚,赵培荣. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发. 2022(01): 1-17 .
    11. MA Yongsheng,CAI Xunyu,YUN Lu,LI Zongjie,LI Huili,DENG Shang,ZHAO Peirong. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China. Petroleum Exploration and Development. 2022(01): 1-20 .
    12. 李文霞,王居贺,王治国,杨卫星,史玉才. 顺北油气田超深高温水平井井眼轨迹控制技术. 石油钻探技术. 2022(04): 18-24 . 本站查看
    13. 刘湘华,刘彪,杜欢,王沫. 顺北油气田断裂带超深水平井优快钻井技术. 石油钻探技术. 2022(04): 11-17 . 本站查看
    14. 陈宗琦,刘湘华,白彬珍,易浩. 顺北油气田特深井钻井完井技术进展与发展思考. 石油钻探技术. 2022(04): 1-10 . 本站查看
    15. 赵向阳,赵聪,王鹏,梁晓阳,杨谋. 超深井井筒温度数值模型与解析模型计算精度对比研究. 石油钻探技术. 2022(04): 69-75 . 本站查看
    16. 张延兵,李录科,史配铭. 储气库水平井井身结构优化技术及应用. 当代化工研究. 2022(15): 135-138 .
    17. 孙荣,张猛. 顺北1-AH井二开长裸眼固井技术. 新型工业化. 2022(06): 13-16+26 .
    18. 张煜,李海英,陈修平,卜旭强,韩俊. 塔里木盆地顺北地区超深断控缝洞型油气藏地质-工程一体化实践与成效. 石油与天然气地质. 2022(06): 1466-1480 .
    19. 白彬珍,曾义金,葛洪魁. 顺北56X特深水平井钻井关键技术. 石油钻探技术. 2022(06): 49-55 . 本站查看
    20. 王莉,秦文斌,易争利. 复兴地区侏罗系页岩油气水平井井身结构优化设计. 江汉石油职工大学学报. 2022(06): 28-30+34 .
    21. 崔月明,史海民,张清. 吉林油田致密油水平井优快钻井完井技术. 石油钻探技术. 2021(02): 9-13 . 本站查看
    22. 唐磊,王建峰,曹敬华,杨敏,李双贵. 塔里木盆地顺北地区超深断溶体油藏地质工程一体化模式探索. 油气藏评价与开发. 2021(03): 329-339 .
    23. 李涛,郭清,程兴洁. 四川盆地L203井区钻井“喷漏同存”浅析. 石化技术. 2021(05): 157-158 .
    24. 史配铭,李晓明,倪华峰,石崇东,姜庆波,程华林. 苏里格气田水平井井身结构优化及钻井配套技术. 石油钻探技术. 2021(06): 29-36 . 本站查看
    25. 胡大梁,欧彪,何龙,肖国益,李文生,唐宇祥. 川西海相超深大斜度井井身结构优化及钻井配套技术. 石油钻探技术. 2020(03): 22-28 . 本站查看
    26. 于洋,刘士银. 高速旋冲钻井技术优化及在顺北区块的试验. 石油机械. 2020(10): 24-29+38 .
    27. 李剑. 南海东部某老油田新钻调整井井身结构瘦身. 中国石油和化工标准与质量. 2020(18): 182+184 .
    28. 李磊,杨进,刘宝生,赵少伟,张灿,杨宇鹏,张昌超,邹欣. 渤海渤中区域深井井身结构优化. 石油钻采工艺. 2020(05): 569-572 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1356) PDF downloads (129) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return