Citation: | ZHAO Xiangyang, ZHAO Cong, WANG Peng, et al. A comparative study on the calculation accuracy of numerical and analytical models for wellbore temperature in ultra-deep wells [J]. Petroleum Drilling Techniques,2022, 50(4):69-75. DOI: 10.11911/syztjs.2022035 |
The accurate prediction of wellbore temperature during drilling is the key factor in the scientific evaluation of wellbore fluid flow safety and pressure control. Therefore, based on the principle of energy conservation between wellbore and formation in each area, the numerical and analytical models for wellbore-formation heat transfer were built. The fully implicit finite difference method and the analytical method were adopted to solve the mathematical models, respectively. Given the wellbore structure and drilling parameters of an ultra-deep well in Shunbei Oilfield, calculation accuracy of the above two models on the calculation results and the influencing factors were analyzed from the aspect of the heat transfer mechanism. The analysis showed that during drilling, the annular fluid temperature in the lower well section was lower than the original ground temperature, while the fluid temperature in the upper well section was higher than it. In the analytical model, a simplified dimensionless time function was used to represent the quasi-steady state heat exchange mode from distant formations to near well walls, and the comprehensive heat transfer coefficient was employed to characterize the total heat exchange between the formation and annulus, and between the annulus and the interior of the drill string. As a result, the wellbore-formation heat exchange was reduced, and thus the calculated fluid temperature in the annulus and drill string was lower than the result from numerical simulations. The results revealed that the calculated results of the heat transfer model were highly consistent with the downhole measurements, while the errors of the numerical solution and analytical solution were 1.46% and 6.94%, respectively, with a difference of 13.15 ℃. The research results provide a theoretical basis for an in-depth understanding of the wellbore-formation heat transfer mechanism and the accurate evaluation of the temperature field during drilling.
[1] |
袁国栋,王鸿远,陈宗琦,等. 塔里木盆地满深1井超深井钻井关键技术[J]. 石油钻探技术,2020,48(4):21–27. doi: 10.11911/syztjs.2020067
YUAN Guodong, WANG Hongyuan, CHEN Zongqi, et al. Key drilling technologies for the ultra-deep Well Manshen 1 in the Tarim Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 21–27. doi: 10.11911/syztjs.2020067
|
[2] |
李双贵,于洋,樊艳芳,等. 顺北油气田超深井井身结构优化设计[J]. 石油钻探技术,2020,48(2):6–11. doi: 10.11911/syztjs.2020002
LI Shuanggui, YU Yang, FAN Yanfang, et al. Optimal design of casing programs for ultra-deep wells in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 6–11. doi: 10.11911/syztjs.2020002
|
[3] |
苏雄,杨明合,陈伟峰,等. 顺北一区小井眼超深井井筒温度场特征研究与应用[J]. 石油钻探技术,2021,49(3):67–74. doi: 10.11911/syztjs.2021006
SU Xiong, YANG Minghe, CHEN Weifeng, et al. Study and application of wellbore temperature field characteristics in the ultra-deep slim-hole wells in the Shunbei No. 1 Area[J]. Petroleum Drilling Techniques, 2021, 49(3): 67–74. doi: 10.11911/syztjs.2021006
|
[4] |
付建红,苏昱,姜伟,等. 深层页岩气水平井井筒瞬态温度场研究与应用[J]. 西南石油大学学报(自然科学版),2019,41(6):165–173.
FU Jianhong, SU Yu, JIANG Wei, et al. Research and application of wellbore transient temperature in deep shale gas horizontal wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(6): 165–173.
|
[5] |
刘洋,艾正青,李早元,等. 注水泥循环温度影响因素探讨[J]. 西南石油大学学报(自然科学版),2012,34(1):154–158.
LIU Yang, AI Zhengqing, LI Zaoyuan, et al. Discussion on the influence factors of cementing circulating temperature[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2012, 34(1): 154–158.
|
[6] |
YANG Mou, LI Xiaoxiao, DENG Jianmin, et al. Prediction of wellbore and formation temperatures during circulation and shut-in stages under kick conditions[J]. Energy, 2015, 91: 1018–1029. doi: 10.1016/j.energy.2015.09.001
|
[7] |
YANG Mou, ZHAO Xiangyang, MENG Yingfeng, et al. Determination of transient temperature distribution inside a wellbore considering drill string assembly and casing program[J]. Applied Thermal Engineering, 2017, 118: 299–314. doi: 10.1016/j.applthermaleng.2017.02.070
|
[8] |
杨谋,孟英峰,李皋,等. 钻井全过程井筒–地层瞬态传热模型[J]. 石油学报,2013,34(2):366–371. doi: 10.7623/syxb201302021
YANG Mou, MENG Yingfeng, LI Gao, et al. A transient heat transfer model of wellbore and formation during the whole drilling process[J]. Acta Petrolei Sinica, 2013, 34(2): 366–371. doi: 10.7623/syxb201302021
|
[9] |
王雪瑞,孙宝江,刘书杰,等. 基于水化反应动力学的深水固井井筒温度与压力耦合预测模型[J]. 石油勘探与开发,2020,47(4):809–818. doi: 10.11698/PED.2020.04.18
WANG Xuerui, SUN Baojiang, LIU Shujie, et al. A coupled model of temperature and pressure based on hydration kinetics during well cementing in deep water[J]. Petroleum Exploration and Development, 2020, 47(4): 809–818. doi: 10.11698/PED.2020.04.18
|
[10] |
HASAN A R, KABIR C S. Aspects of wellbore heat transfer during two-phase flow[J]. SPE Production & Facilities, 1994, 9(3): 211–216.
|
[11] |
KABIR C S, HASAN A R, KOUBA G E, et al. Determining circulating fluid temperature in drilling, workover, and well control operations[J]. SPE Drilling & Completion, 1996, 11(2): 74–79.
|
[12] |
唐林,冯文伟,王林. 井内及井壁瞬态温度的确定[J]. 钻井液与完井液,1998,15(5):29–33.
TANG Lin, FENG Wenwei, WANG Lin. Determining instantaneous state temperature in the borehole and the wall[J]. Drilling Fluid & Completion Fluid, 1998, 15(5): 29–33.
|
[13] |
窦亮彬,李根生,沈忠厚,等. 注CO2井筒温度压力预测模型及影响因素研究[J]. 石油钻探技术,2013,41(1):76–81. doi: 10.3969/j.issn.1001-0890.2013.01.015
DOU Liangbin, LI Gensheng, SHEN Zhonghou, et al. Wellbore pressure and temperature prediction model and its affecting factors for CO2 injection wells[J]. Petroleum Drilling Techniques, 2013, 41(1): 76–81. doi: 10.3969/j.issn.1001-0890.2013.01.015
|
[14] |
NIAN Yongle, CHENG Wenlong. Evaluation of geothermal heating from abandoned oil wells[J]. Energy, 2018, 142: 592–607. doi: 10.1016/j.energy.2017.10.062
|
[15] |
李勇,纪宏飞,邢鹏举,等. 气井井筒温度场及温度应力场的理论解[J]. 石油学报,2021,42(1):84–94. doi: 10.7623/syxb202101008
LI Yong, JI Hongfei, XING Pengju, et al. Theoretical solutions of temperature field and thermal stress field in wellbore of a gas well[J]. Acta Petrolei Sinica, 2021, 42(1): 84–94. doi: 10.7623/syxb202101008
|
[16] |
YANG Mou, YANG Lyuchao, WANG Tao, et al. Estimating formation leakage pressure using a coupled model of circulating temperature-pressure in an eccentric annulus[J]. Journal of Petroleum Science and Engineering, 2020, 189: 106918. doi: 10.1016/j.petrol.2020.106918
|
[17] |
张更,李军,柳贡慧,等. 考虑钻井液流动阻力与钻柱旋转的井筒瞬态传热新模型[J]. 断块油气田,2021,28(1):133–138.
ZHANG Geng, LI Jun, LIU Gonghui, et al. Transient wellbore heat transfer new model considering drilling fluid flow resistance and drillstring rotation[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 133–138.
|
[18] |
张锐尧,李军,柳贡慧,等. 深水钻井多压力系统条件下的井筒温度场研究[J]. 石油机械,2021,49(7):77–85. doi: 10.16082/j.cnki.issn.1001-4578.2021.07.011
ZHANG Ruiyao, LI Jun, LIU Gonghui, et al. Research on the wellbore temperature field under the multiple pressure system during deep water drilling[J]. China Petroleum Machinery, 2021, 49(7): 77–85. doi: 10.16082/j.cnki.issn.1001-4578.2021.07.011
|
[19] |
董胜伟,王子健,曹 飞,等. 深水浅部水合物储层水平井井筒温度计算模型[J]. 特种油气藏,2020,27(5):157–161.
DONG Shengwei, WANG Zijian, CAO Fei,et al. Wellbore temperature calculation model for horizontal wells in shallow hydrate reservoirs in deep water[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 157–161.
|
[20] |
杨顺辉,豆宁辉,赵向阳,等. 多层合采智能井井筒温度场预测模型及应用[J]. 石油钻探技术,2019,47(4):83–91.
YANG Shunhui, DOU Ninghui, ZHAO Xiangyang, et al. Temperature field prediction model for multi-layer commingled production wellbore in intelligent wells and it’s application[J]. Petroleum Dril-ling Techniques, 2019, 47(4): 83–91.
|
[21] |
YANG Mou, LUO Dayu, CHEN Yuanhang, et al. Establishing a practical method to accurately determine and manage wellbore thermal behavior in high-temperature drilling[J]. Applied Energy, 2019, 238: 1471–1483. doi: 10.1016/j.apenergy.2019.01.164
|
1. |
赵崇胜,王波,苟波,罗鹏飞,陈国军,巫国全. 深部煤层气油电混驱压裂设备配置与工艺技术. 油气藏评价与开发. 2025(02): 292-299 .
![]() | |
2. |
张国友. 页岩油全电动压裂装备配置与作业技术研究. 石油机械. 2024(03): 102-107 .
![]() | |
3. |
陈万锋. 道路工程中的技术分析及预制混凝土路面板的力学性能分析. 交通科技与管理. 2024(06): 83-85 .
![]() | |
4. |
乔玲茜,王本强,陈雨松,何启越,蔡金赤,续化蕾,江厚顺. 页岩气藏暂堵转向压裂裂缝扩展规律模拟. 断块油气田. 2024(02): 241-245+265 .
![]() | |
5. |
杨亚东,邹龙庆,王一萱,朱静怡,李小刚,熊俊雅. 川南深层页岩气藏压裂裂缝导流能力影响因素分析. 特种油气藏. 2024(05): 162-167 .
![]() | |
6. |
尤璐. 页岩油气压裂作业环境保护技术浅析. 化工安全与环境. 2023(09): 65-68 .
![]() | |
7. |
李方淼. 电动压裂供电技术研究. 石油和化工设备. 2023(08): 129-132 .
![]() | |
8. |
唐瑞欢. 川渝地区页岩气压裂设备发展新方向. 石油机械. 2023(09): 94-100 .
![]() | |
9. |
郭建春,任文希,曾凡辉,罗扬,李宇麟,杜肖泱. 非常规油气井压裂参数智能优化研究进展与发展展望. 石油钻探技术. 2023(05): 1-7+179 .
![]() |