Citation: | GENG Lidong. Application Status and Development Suggestions of Big Data Technology in Petroleum Engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72-78. DOI: 10.11911/syztjs.2020134 |
[1] |
MCKINSEY J, CHUI M, BROWN B, et al. Big data: the next frontier for innovation, competition, and productivity[EB/OL]. [2020-03-20]. https//www.mckinsey.com/business-functions/digital mckinsey/our-insights/big-data-the-next-frontier-for-innovation.
|
[2] |
ISHWARAPPA, ANURADHA J. A brief introduction on big data 5Vs characteristics and hadoop technology[J]. Procedia Computer Science, 2015, 48: 319–324.
|
[3] |
ZBOROWSKI M. How Conocophillips solved its big data problem[J]. Journal of Petroleum Technology, 2018, 70(7): 16–26.
|
[4] |
AL-SUBAIEI D, AL-HAMER M, AL-ZAIDAN A, et al. Smart production surveillance: production monitoring and optimization using integrated digital oil field[R]. SPE 198114, 2019.
|
[5] |
刘伟,闫娜. 人工智能在石油工程领域应用及影响[J]. 石油科技论坛,2018,37(4):32–40. doi: 10.3969/j.issn.1002-302x.2018.04.006
LIU Wei, YAN Na. Application and influence of artificial intelligence in petroleum engineering area[J]. Oil Forum, 2018, 37(4): 32–40. doi: 10.3969/j.issn.1002-302x.2018.04.006
|
[6] |
DELFI cognitive E&P environment[EB/OL]. [2020-03-20]. https://www.software.slb.com/delfi.
|
[7] |
GE’s predix[EB/OL]. [2020-03-20]. https://www.bhge.com/digital/ges-predix.
|
[8] |
Halliburton Landmark introduces DecisionSpace® 365 cloud applications at annual innovation forum[EB/OL]. [2020-03-20]. https://www.halliburton.com/en-US/news/announcements/2019/halliburton-landmark-introduces-decisionSpace-365-cloud-applications.html?node-id=hgeyxtfs.
|
[9] |
AKW Analytics Inc. and PALM- Petroleum Analytics Learning MachineTM[DB/OL]. [2020-03-20]. https://www.researchgate.net/publication/335276595_AKW_Analytics_Inc.
|
[10] |
新华网. 中石油发布勘探开发梦想云平台[EB/OL]. [2020-03-20]. http://www.xinhuanet.com//fortune/2018-11/27/c_1123775741.htm.
Xinhuanet. PetroChina published the dream cloud platform for exploration and exploitation[EB/OL].[2020-03-20]. http://www.xinhuanet.com//fortune/2018-11/27/c_1123775741.htm.
|
[11] |
BUSBY D, PIVOT F, TADJER A. Use of data analytics to improve well placement optimization under uncertainty[R]. SPE 188265, 2017.
|
[12] |
LASHARi S E, TAKBIRI-BORUJENI A, FATHI E, et al. Drilling performance monitoring and optimization: a data-driven approach [J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(4): 2747–2756.
|
[13] |
侯凯.基于大数据的钻头选型方法研究[D].成都: 西南石油大学, 2018.
HOU Kai. Investigation of bit selection method based on the big data[D]. Chengdu: Southwest Petroleum University, 2018.
|
[14] |
NOSHI C, SCUBERT J J. Application of data science and machine learning algorithms for ROP optimization in West Texas: turing data into knowledge[R]. OTC 29288, 2019.
|
[15] |
左迪一.基于大数据分析的克深区块钻井综合提速研究[D].北京: 中国石油大学(北京), 2018.
ZUO Diyi. Research on ROP increasing in Keshen Block based on big data analysis[D]. Beijing: China University of Petroleum (Beijing), 2018.
|
[16] |
刘胜娃, 孙俊明, 高翔, 等.基于人工神经网络的钻井机械钻速预测模型的分析与建立[J].计算机科学, 2019, 46(增刊1): 605–608.
LIU Shengwa, SUN Junming, GAO Xiang, et al. Analysis and establishment of drilling speed prediction model for drilling machinery based on artificial neural networks[J]. Computer Science, 2019, 46(supplement 1): 605–608.
|
[17] |
GUPTA I, TRAN N, DEVEGOWDA D, et al. Looking ahead of the bit using surface drilling and petrophysical data: machine-learning-based real time geosteering in volve field[R]. SPE 199882, 2020.
|
[18] |
李维校.基于石油钻井大数据技术的钻进优化控制的研究[D].西安: 西安石油大学, 2018.
LI Weixiao. Research on drilling optimization control based on petroleum drilling big data technology[D]. Xi’an: Xi’an Shiyou University, 2018.
|
[19] |
JOHNSTON J, GUICHARD A. New findings in drilling and wells using big data analytics[R]. OTC 26021, 2015.
|
[20] |
RAED A, MOHAMMAD A, SALEM G, et al. Drilling through data: automated kicked detection using data mining[R]. SPE 193687, 2018.
|
[21] |
PANKAJ P, GEETAN S, MACDONALD R, et al. Need for speed: data analytics coupled to reservoir characterization fast tracks well completion optimization[R]. SPE 189790, 2018.
|
[22] |
LIANG Yu, LIAO Lulu, GUO Ye. A big data study: correlations between EUR and petrophysics/engineering/production parameters in shale formations by data regression and interpolation analysis[R]. SPE 194381, 2019.
|
[23] |
WILSON A. Technique blends dimensionless numbers and data mining to predict recovery factors[J]. Journal of Petroleum Technology, 2017, 69(10): 88–90.
|
[24] |
ROLLINS B T, BROUSSARD A, CUMMINS B, et al. Continental production allocation and analysis through big data[R]. URTEC 2678296, 2017.
|
1. |
田入运,曹一涵. 面向工程应用的大数据技术实践教学探索. 实验室研究与探索. 2024(04): 130-137+142 .
![]() | |
2. |
解婷婷,侯珂. 数字孪生在油气勘探开发中的研究与应用. 现代工业经济和信息化. 2024(04): 140-144+163 .
![]() | |
3. |
刘璐. 基于大数据应用的高效管控技术研究与应用. 机电信息. 2024(16): 76-79 .
![]() | |
4. |
郭建春,张宇,曾凡辉,胡大淦,白小嵩,龚高彬,任文希. 非常规油气储层智能压裂技术研究进展与展望. 天然气工业. 2024(09): 13-26 .
![]() | |
5. |
王建龙,王越支,邱卫红,于琛,张菲菲,王学迎. 基于大数据与融合模型的钻井智能辅助决策系统. 石油钻探技术. 2024(05): 105-116 .
![]() | |
6. |
Qian Li,Jun-Ping Li,Lan-Lan Xie. A systematic review of machine learning modeling processes and applications in ROP prediction in the past decade. Petroleum Science. 2024(05): 3496-3516 .
![]() |
|
7. |
杨希军,孔红芳,赵东,易春飚,于国起. 自然语言方法提取油井修井施工信息提高智能化效率. 石油钻采工艺. 2024(04): 492-508 .
![]() | |
8. |
贾京坤,朱英,谈捷. 数字化转型趋势下国际能源化工公司的战略与实践. 石油学报(石油加工). 2023(01): 204-212 .
![]() | |
9. |
陈德承. 基于数据模型的压裂参数智能优化方法研究. 河南科技. 2023(01): 23-27 .
![]() | |
10. |
李晓明,范玉岳,苏兴华,詹胜,胡刚,何以晴. 基于大数据分析技术的钻井提效实践研究. 电脑知识与技术. 2023(09): 66-68+75 .
![]() | |
11. |
吴玉林,姜莹,程光华,马佳,钱育蓉. 基于一维卷积神经网络的钻井周期预测. 断块油气田. 2023(03): 495-504 .
![]() | |
12. |
张好林,杨传书,李昌盛,王果,段继男. 钻井数字孪生系统设计与研发实践. 石油钻探技术. 2023(03): 58-65 .
![]() | |
13. |
徐智聃,卢奕泽. 数字化转型背景下大数据技术在石油工程专业中的应用研究. 中国石油和化工标准与质量. 2023(19): 107-109 .
![]() | |
14. |
钮进彪. 探究大数据技术在智慧工程中的应用. 内蒙古科技与经济. 2023(21): 127-129+133 .
![]() | |
15. |
翟亮. 基于XGBoost算法的吸水剖面预测方法研究与应用. 油气地质与采收率. 2022(01): 175-180 .
![]() | |
16. |
王平,沈海超. 加拿大M致密砂岩气藏高效开发技术. 石油钻探技术. 2022(01): 97-102 .
![]() | |
17. |
杨传书. 数字孪生技术在钻井领域的应用探索. 石油钻探技术. 2022(03): 10-16 .
![]() | |
18. |
耿黎东. 钻完井大数据特点与应用方案研究. 石油钻采工艺. 2022(01): 89-96 .
![]() | |
19. |
柳海啸,刘芳,代文星,冯一,巩永刚,李明明. 基于大数据分析技术的钻井提效实践. 石油钻采工艺. 2021(04): 436-441 .
![]() |