GENG Lidong. Application Status and Development Suggestions of Big Data Technology in Petroleum Engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72-78. DOI: 10.11911/syztjs.2020134
Citation: GENG Lidong. Application Status and Development Suggestions of Big Data Technology in Petroleum Engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72-78. DOI: 10.11911/syztjs.2020134

Application Status and Development Suggestions of Big Data Technology in Petroleum Engineering

More Information
  • Received Date: June 11, 2020
  • Revised Date: December 24, 2020
  • Available Online: December 29, 2020
  • Big data technology, gradually becoming one of the most important methods for oil companies and oilfield service companies to realize petroleum engineering intelligence, cost reduction and efficiency improvement, has become a research hotspot at home and abroad. The paper introduces the definition and characteristics of big data technology to promote its rapid development and widespread application in the oil and gas industry and accelerate the digital and intelligent transformation of petroleum engineering. In this study, the current application of big data in petroleum engineering is analyzed from two aspects: big data platforms and specific application scenarios including drilling, fracturing and developing. Based on the analysis, it is proposed that an unified big data platform should be established with the cooperation of digital giants to modify the data management mechanism and technical standards. Besides, basic and prospective research should be strengthened, and research projects should be implemented for specific application scenarios, establishing an ecosystem of big data for petroleum engineering. The application of big data technology in petroleum engineering is promising, and it is of great significance to accelerate the investigation and application of big data in petroleum engineering for promoting the economic and efficient development of oil and gas .
  • [1]
    MCKINSEY J, CHUI M, BROWN B, et al. Big data: the next frontier for innovation, competition, and productivity[EB/OL]. [2020-03-20]. https//www.mckinsey.com/business-functions/digital mckinsey/our-insights/big-data-the-next-frontier-for-innovation.
    [2]
    ISHWARAPPA, ANURADHA J. A brief introduction on big data 5Vs characteristics and hadoop technology[J]. Procedia Computer Science, 2015, 48: 319–324.
    [3]
    ZBOROWSKI M. How Conocophillips solved its big data problem[J]. Journal of Petroleum Technology, 2018, 70(7): 16–26.
    [4]
    AL-SUBAIEI D, AL-HAMER M, AL-ZAIDAN A, et al. Smart production surveillance: production monitoring and optimization using integrated digital oil field[R]. SPE 198114, 2019.
    [5]
    刘伟,闫娜. 人工智能在石油工程领域应用及影响[J]. 石油科技论坛,2018,37(4):32–40. doi: 10.3969/j.issn.1002-302x.2018.04.006

    LIU Wei, YAN Na. Application and influence of artificial intelligence in petroleum engineering area[J]. Oil Forum, 2018, 37(4): 32–40. doi: 10.3969/j.issn.1002-302x.2018.04.006
    [6]
    DELFI cognitive E&P environment[EB/OL]. [2020-03-20]. https://www.software.slb.com/delfi.
    [7]
    GE’s predix[EB/OL]. [2020-03-20]. https://www.bhge.com/digital/ges-predix.
    [8]
    Halliburton Landmark introduces DecisionSpace® 365 cloud applications at annual innovation forum[EB/OL]. [2020-03-20]. https://www.halliburton.com/en-US/news/announcements/2019/halliburton-landmark-introduces-decisionSpace-365-cloud-applications.html?node-id=hgeyxtfs.
    [9]
    AKW Analytics Inc. and PALM- Petroleum Analytics Learning MachineTM[DB/OL]. [2020-03-20]. https://www.researchgate.net/publication/335276595_AKW_Analytics_Inc.
    [10]
    新华网. 中石油发布勘探开发梦想云平台[EB/OL]. [2020-03-20]. http://www.xinhuanet.com//fortune/2018-11/27/c_1123775741.htm.

    Xinhuanet. PetroChina published the dream cloud platform for exploration and exploitation[EB/OL].[2020-03-20]. http://www.xinhuanet.com//fortune/2018-11/27/c_1123775741.htm.
    [11]
    BUSBY D, PIVOT F, TADJER A. Use of data analytics to improve well placement optimization under uncertainty[R]. SPE 188265, 2017.
    [12]
    LASHARi S E, TAKBIRI-BORUJENI A, FATHI E, et al. Drilling performance monitoring and optimization: a data-driven approach [J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(4): 2747–2756.
    [13]
    侯凯.基于大数据的钻头选型方法研究[D].成都: 西南石油大学, 2018.

    HOU Kai. Investigation of bit selection method based on the big data[D]. Chengdu: Southwest Petroleum University, 2018.
    [14]
    NOSHI C, SCUBERT J J. Application of data science and machine learning algorithms for ROP optimization in West Texas: turing data into knowledge[R]. OTC 29288, 2019.
    [15]
    左迪一.基于大数据分析的克深区块钻井综合提速研究[D].北京: 中国石油大学(北京), 2018.

    ZUO Diyi. Research on ROP increasing in Keshen Block based on big data analysis[D]. Beijing: China University of Petroleum (Beijing), 2018.
    [16]
    刘胜娃, 孙俊明, 高翔, 等.基于人工神经网络的钻井机械钻速预测模型的分析与建立[J].计算机科学, 2019, 46(增刊1): 605–608.

    LIU Shengwa, SUN Junming, GAO Xiang, et al. Analysis and establishment of drilling speed prediction model for drilling machinery based on artificial neural networks[J]. Computer Science, 2019, 46(supplement 1): 605–608.
    [17]
    GUPTA I, TRAN N, DEVEGOWDA D, et al. Looking ahead of the bit using surface drilling and petrophysical data: machine-learning-based real time geosteering in volve field[R]. SPE 199882, 2020.
    [18]
    李维校.基于石油钻井大数据技术的钻进优化控制的研究[D].西安: 西安石油大学, 2018.

    LI Weixiao. Research on drilling optimization control based on petroleum drilling big data technology[D]. Xi’an: Xi’an Shiyou University, 2018.
    [19]
    JOHNSTON J, GUICHARD A. New findings in drilling and wells using big data analytics[R]. OTC 26021, 2015.
    [20]
    RAED A, MOHAMMAD A, SALEM G, et al. Drilling through data: automated kicked detection using data mining[R]. SPE 193687, 2018.
    [21]
    PANKAJ P, GEETAN S, MACDONALD R, et al. Need for speed: data analytics coupled to reservoir characterization fast tracks well completion optimization[R]. SPE 189790, 2018.
    [22]
    LIANG Yu, LIAO Lulu, GUO Ye. A big data study: correlations between EUR and petrophysics/engineering/production parameters in shale formations by data regression and interpolation analysis[R]. SPE 194381, 2019.
    [23]
    WILSON A. Technique blends dimensionless numbers and data mining to predict recovery factors[J]. Journal of Petroleum Technology, 2017, 69(10): 88–90.
    [24]
    ROLLINS B T, BROUSSARD A, CUMMINS B, et al. Continental production allocation and analysis through big data[R]. URTEC 2678296, 2017.
  • Cited by

    Periodical cited type(19)

    1. 田入运,曹一涵. 面向工程应用的大数据技术实践教学探索. 实验室研究与探索. 2024(04): 130-137+142 .
    2. 解婷婷,侯珂. 数字孪生在油气勘探开发中的研究与应用. 现代工业经济和信息化. 2024(04): 140-144+163 .
    3. 刘璐. 基于大数据应用的高效管控技术研究与应用. 机电信息. 2024(16): 76-79 .
    4. 郭建春,张宇,曾凡辉,胡大淦,白小嵩,龚高彬,任文希. 非常规油气储层智能压裂技术研究进展与展望. 天然气工业. 2024(09): 13-26 .
    5. 王建龙,王越支,邱卫红,于琛,张菲菲,王学迎. 基于大数据与融合模型的钻井智能辅助决策系统. 石油钻探技术. 2024(05): 105-116 . 本站查看
    6. Qian Li,Jun-Ping Li,Lan-Lan Xie. A systematic review of machine learning modeling processes and applications in ROP prediction in the past decade. Petroleum Science. 2024(05): 3496-3516 .
    7. 杨希军,孔红芳,赵东,易春飚,于国起. 自然语言方法提取油井修井施工信息提高智能化效率. 石油钻采工艺. 2024(04): 492-508 .
    8. 贾京坤,朱英,谈捷. 数字化转型趋势下国际能源化工公司的战略与实践. 石油学报(石油加工). 2023(01): 204-212 .
    9. 陈德承. 基于数据模型的压裂参数智能优化方法研究. 河南科技. 2023(01): 23-27 .
    10. 李晓明,范玉岳,苏兴华,詹胜,胡刚,何以晴. 基于大数据分析技术的钻井提效实践研究. 电脑知识与技术. 2023(09): 66-68+75 .
    11. 吴玉林,姜莹,程光华,马佳,钱育蓉. 基于一维卷积神经网络的钻井周期预测. 断块油气田. 2023(03): 495-504 .
    12. 张好林,杨传书,李昌盛,王果,段继男. 钻井数字孪生系统设计与研发实践. 石油钻探技术. 2023(03): 58-65 . 本站查看
    13. 徐智聃,卢奕泽. 数字化转型背景下大数据技术在石油工程专业中的应用研究. 中国石油和化工标准与质量. 2023(19): 107-109 .
    14. 钮进彪. 探究大数据技术在智慧工程中的应用. 内蒙古科技与经济. 2023(21): 127-129+133 .
    15. 翟亮. 基于XGBoost算法的吸水剖面预测方法研究与应用. 油气地质与采收率. 2022(01): 175-180 .
    16. 王平,沈海超. 加拿大M致密砂岩气藏高效开发技术. 石油钻探技术. 2022(01): 97-102 . 本站查看
    17. 杨传书. 数字孪生技术在钻井领域的应用探索. 石油钻探技术. 2022(03): 10-16 . 本站查看
    18. 耿黎东. 钻完井大数据特点与应用方案研究. 石油钻采工艺. 2022(01): 89-96 .
    19. 柳海啸,刘芳,代文星,冯一,巩永刚,李明明. 基于大数据分析技术的钻井提效实践. 石油钻采工艺. 2021(04): 436-441 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (1543) PDF downloads (373) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return