Citation: | LI Yibo, LI Yongjie. The Development and Testing of a Rapid Measurement Device for Determining the Gas Drilling Subsurface Blasting Limits[J]. Petroleum Drilling Techniques, 2019, 47(5): 62-68. DOI: 10.11911/syztjs.2019040 |
In order to solve the problem of finding the limits of subsurface blasting in gas drilling, a device for quickly and directly measuring the blasting limit of formation hydrocarbon gas at wellsite was developed. A test method corresponding to this device was proposed and the rapid measurement test was carried out. The test results suggested that this test method could accurately measure the blasting limit of formation hydrocarbon gas under different pressures, temperatures and mixed gas volume fractions, and obtained the blasting range of current formation hydrocarbon gas. Thus this method could prevent the occurrence of subsurface blasting. In the case of methane gas, the measurement result for methane gas at 0.1 MPa verified the effectiveness of the device and revealed the influence of temperature and pressure on the blasting. The research indicated that the successful development of gas drilling subsurface blasting limit measurement device and the proposal of corresponding measurement methods provided an effective preventive measure for addressing the subsurface blasting problem in gas drilling. Thus this device showed the potential for wide application and adoption.
[1] |
李永杰, 陈一健, 孟英峰. 井下燃爆监测技术在气体钻井中的应用[J]. 天然气工业, 2008, 28(5): 50–52. doi: 10.3787/j.issn.1000-0976.2008.05.015
LI Yongjie, CHEN Yijian, MENG Yingfeng. Application of downhole explosion monitoring technology in gas drilling[J]. Natural Gas Industry, 2008, 28(5): 50–52. doi: 10.3787/j.issn.1000-0976.2008.05.015
|
[2] |
练章华, 林铁军, 孟英峰.气体钻井基础理论及其应用[M].北京: 石油工业出版社, 2012: 1–5.
LIAN Zhanghua, LIN Tiejun, MENG Yingfeng, et al. Basic theory of gas drilling and its application[M].Beijing: Petroleum Industry Press, 2012: 1–5.
|
[3] |
NF C23-560-3—2005 Electrical apparatus for the detection and measurement of flammable gases: part 3: performance requirements for group I apparatus indicating a volume fraction up to 100% methane in air[S].
|
[4] |
王刚, 罗海珠, 潘竞涛, 等. 多组分可燃性气体爆炸影响研究[J]. 世界科技研究与发展, 2011, 33(2): 232–235. doi: 10.3969/j.issn.1006-6055.2011.02.019
WANG Gang, LUO Haizhu, PAN Jingtao, et al. Influence of explosion on multiple ignitability gases explosion[J]. World Sci-Tech R&D, 2011, 33(2): 232–235. doi: 10.3969/j.issn.1006-6055.2011.02.019
|
1. |
张金宝. 钻杆内水力输送分组筛管自动对接技术试验研究. 煤矿安全. 2024(07): 206-212 .
![]() | |
2. |
高德利,毕延森,鲜保安. 中国煤层气高效开发井型与钻完井技术进展. 天然气工业. 2022(06): 1-18 .
![]() | |
3. |
黄中伟,李国富,杨睿月,李根生. 我国煤层气开发技术现状与发展趋势. 煤炭学报. 2022(09): 3212-3238 .
![]() | |
4. |
刘明军,李兵,黄巍. 煤层气水平井无导眼地质导向钻进技术. 煤田地质与勘探. 2020(01): 233-239 .
![]() | |
5. |
谭天宇,李浩,李宗源,蒋海涛,何景朝. 煤层气多分支水平井分支井眼重入筛管完井技术. 石油钻探技术. 2020(04): 78-82 .
![]() | |
6. |
王尧,邢洪宪,张磊,张纪双,张春升,孟召兰,刘传刚. 泡沫金属防砂筛管性能评价试验. 石油机械. 2019(04): 90-97 .
![]() |