WEI Hongshu, DU Qingjie, CAO Bobo, WANG Zhiyuan, SUN Baojiang, LIU Zheng. The Ascending Law of Gas Bubbles in a Wellbore Considering the Phase Change of Natural Gas Hydrates during Deepwater Well Shut-in[J]. Petroleum Drilling Techniques, 2019, 47(2): 42-49. DOI: 10.11911/syztjs.2019035
Citation: WEI Hongshu, DU Qingjie, CAO Bobo, WANG Zhiyuan, SUN Baojiang, LIU Zheng. The Ascending Law of Gas Bubbles in a Wellbore Considering the Phase Change of Natural Gas Hydrates during Deepwater Well Shut-in[J]. Petroleum Drilling Techniques, 2019, 47(2): 42-49. DOI: 10.11911/syztjs.2019035

The Ascending Law of Gas Bubbles in a Wellbore Considering the Phase Change of Natural Gas Hydrates during Deepwater Well Shut-in

More Information
  • Received Date: December 07, 2018
  • Revised Date: February 19, 2019
  • Available Online: April 18, 2019
  • During the shut-in of deepwater wells, the formation of natural gas hydrate will significantly delay the migration of bubbles and affect the safe operation cycle of drilling. The bubble ascending dynamics considering the phase change of hydrate was studied. In the study, an indoor vertical cylinder was used to simulate the deepwater wellbore and to investigate the growth characteristics of hydrate film on the surface of methane bubbles.. A model was proposed which incorporated the hydrate lateral growth model and the hydrate film thickness prediction method considering natural convection heat transfer. The correlations between hydrate bubble deformation rate and Morton number, drag coefficient and Reynolds number were explored. A comprehensive prediction model of bubble ascending velocity in wellbore considering hydrate phase change under shut-in conditions was established based on the study, and the safe operation cycle of a well in the South China Sea was predicted and analyzed. The experimental and simulation results show that the newly established natural convection heat transfer model has higher prediction accuracy for the lateral growth rate and thickness of the hydrate film and that the deformation rate of hydrate bubble decreases with the Morton number. The drag coefficient decreases first and then increases gradually with the Reynolds number and the corresponding calculation formula was obtained through fitting. Studies suggest that the formation of hydrate on the surface of the bubbles can significantly reduce the ascending velocity of bubbles and prolong the safe operation cycle. However, the risk of hydrate blockage will increase as gas reaches the subsea wellhead, and pertinent well control measures should be taken according to the shut-in time.

  • [1]
    谢仁军, 刘书杰, 文敏, 等. 深水钻井溢流井控期间水合物生成主控因素[J]. 石油钻采工艺, 2015, 37(1): 64–67.

    XIE Renjun, LIU Shujie, WEN Min, et al. Main control factor of hydrate generation during overflow well control period of deepwater drilling[J]. Oil Drilling & Production Technology, 2015, 37(1): 64–67.
    [2]
    王金波, 王志远, 张伟国, 等. 南海深水海域避台风期间井控安全作业周期研究[J]. 石油钻探技术, 2013, 41(3): 51–55. doi: 10.3969/j.issn.1001-0890.2013.03.010

    WANG Jinbo, WANG Zhiyuan, ZHANG Weiguo, et al. Well control safety operation cycle during typhoon at deep waters of South China Sea[J]. Petroleum Drilling Techniques, 2013, 41(3): 51–55. doi: 10.3969/j.issn.1001-0890.2013.03.010
    [3]
    叶鹏, 刘道平, 张健. 悬浮气泡表面天然气水合物形成的特性研究[J]. 石油与天然气化工, 2013, 42(5): 468–472. doi: 10.3969/j.issn.1007-3426.2013.05.006

    YE Peng, LIU Daoping, ZHANG Jian. Characteristics researches of natural gas hydrate growth on the suspended bubble surface[J]. Chemical Engineering of Oil & Gas, 2013, 42(5): 468–472. doi: 10.3969/j.issn.1007-3426.2013.05.006
    [4]
    张健, 刘道平, 苏星, 等. 水滴和气泡表面气体水合物的生长特性对比[J]. 石油与天然气化工, 2013, 42(1): 37–41. doi: 10.3969/j.issn.1007-3426.2013.01.008

    ZHANG Jian, LIU Daoping, SU Xing, et al. Comparative analysis of growth characteristics of hydrate formation on the surface of suspended water droplet and bubble[J]. Chemical Engineering of Oil & Gas, 2013, 42(1): 37–41. doi: 10.3969/j.issn.1007-3426.2013.01.008
    [5]
    蔡婷. 天然气水合物在管道中沉积与崩塌的预测模型研究[J]. 钻采工艺, 2018, 41(6): 46–49. doi: 10.3969/J.ISSN.1006-768X.2018.06.14

    CAI Ting. Model for predicting deposition and collapse of natural gas hydrate in pipeline[J]. Drilling & Production Technology, 2018, 41(6): 46–49. doi: 10.3969/J.ISSN.1006-768X.2018.06.14
    [6]
    LIU Zheng, LI Hao, CHEN Litao, et al. A new model of and insight into hydrate film lateral growth along the gas-liquid interface considering natural convection heat transfer[J]. Energy & Fuels, 2018, 32(2): 2053–2063.
    [7]
    BATCHELOR G K. An introduction to fluid dynamics[M]. Cambridge: Cambridge University Press, 2000: 211-219.
    [8]
    DAVIES R M, TAYLOR G I. The mechanics of large bubbles rising through extended liquids and through liquids in tubes[J]. Proceedings of the Royal Society A, 1950, 200(1062): 375–390.
    [9]
    WALLIS G B. The terminal speed of single drops or bubbles in an infinite medium[J]. International Journal of Multiphase Flow, 1974, 1(4): 491–511. doi: 10.1016/0301-9322(74)90003-2
    [10]
    闫红杰, 赵国建, 刘柳, 等. 静止水中单气泡形状及上升规律的实验研究[J]. 中南大学学报(自然科学版), 2016, 47(7): 2513–2520.

    YAN Hongjie, ZHAO Guojian, LIU Liu, et al. Experimental study on shape and rising behavior of single bubble in stagnant water[J]. Journal of Central South University (Science and Technology), 2016, 47(7): 2513–2520.
    [11]
    BIGALKE N K, ENSTAD L I, REHDER G, et al. Terminal velocities of pure and hydrate coated CO2 droplets and CH4 bubbles rising in a simulated oceanic environment[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2010, 57(9): 1102–1110. doi: 10.1016/j.dsr.2010.05.008
    [12]
    SATO Y, KIYONO F, OGASAWARA K, et al. An experimental study on the dynamics of a rising methane bubble covered with hydrates[J]. Journal of the Mining and Materials Processing Institute of Japan, 2013, 129(4): 124–131. doi: 10.2473/journalofmmij.129.124
    [13]
    FISHENDEN M W, SAUNDERS O A. An introduction to heat transfer[M]. Oxford : Clarendon Press, 1950: 136-138.
    [14]
    LEWANDOWSKI W M, RADZIEMSKA E, BUZUK M, et al. Free convection heat transfer and fluid flow above horizontal rectangular plates[J]. Applied Energy, 2000, 66(2): 177–197. doi: 10.1016/S0306-2619(99)00024-0
    [15]
    SAVILLE D A, CHURCHILL S W. Laminar free convection in boundary layers near horizontal cylinders and vertical axisymmetric bodies[J]. Journal of Fluid Mechanics, 1967, 29(2): 391–399. doi: 10.1017/S0022112067000904
    [16]
    PENG B Z, DANDEKAR A, SUN Changyu, et al. Hydrate film growth on the surface of a gas bubble suspended in water[J]. The Journal of Physical Chemistry B, 2007, 111(43): 12485–12493.
    [17]
    WILKINSON P M, HARINGA H, VAN DIERENDONCK L L. Mass transfer and bubble size in a bubble column under pressure[J]. Chemical Engineering Science, 1994, 49(9): 1417–1427. doi: 10.1016/0009-2509(93)E0022-5
    [18]
    UCHIDA T, EBINUMA T, KAWABATA J, et al. Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide[J]. Journal of Crystal Growth, 1999, 204(3): 348–356. doi: 10.1016/S0022-0248(99)00178-5
    [19]
    MORI Y H. Estimating the thickness of hydrate films from their lateral growth rates: application of a simplified heat transfer model[J]. Journal of Crystal Growth, 2001, 223(1/2): 206–212.
    [20]
    FREER E M, SELIM M S, SLOAN E D Jr. Methane hydrate film growth kinetics[J]. Fluid Phase Equilibria, 2001, 185(1/2): 65–75.
    [21]
    MOCHIZUKI T, MORI Y H. Clathrate-hydrate film growth along water/hydrate-former phase boundaries-numerical heat-transfer study[J]. Journal of Crystal Growth, 2006, 290(2): 642–652.
    [22]
    LI Shengli, SUN Changyu, LIU Bei, et al. Initial thickness measurements and insights into crystal growth of methane hydrate film[J]. AIChE Journal, 2013, 59(6): 2145–2154. doi: 10.1002/aic.13987
  • Related Articles

    [1]ZHANG Xinliang, JIN Lei, ZHANG Rui, ZHANG Guanlin, FENG Liying. Key Technologies for Casing Running with Double Floating Collars in Middle and Deep Horizontal Wells[J]. Petroleum Drilling Techniques, 2023, 51(6): 57-63. DOI: 10.11911/syztjs.2023053
    [2]WANG Qing, ZHANG Jiawei, SUN Minghao, JI Guodong, WANG Haige, SUN Xiaofeng. The Settlement Drag Coefficient of Gulong Shale Cuttings in Power-Law Fluids in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(2): 54-60. DOI: 10.11911/syztjs.2023006
    [3]YUAN Jianwei, LIU Meijia, LI Chao, WU Chunxin, MA Dong. Research on Boundary Correction Coefficient of Horizontal Wells in Narrow Channel Reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(1): 86-90. DOI: 10.11911/syztjs.2022056
    [4]GE Lizhen, WANG Gongchang, ZHANG Rui, ZHANG Lie, ZHANG Junting. Research on the Perforation Avoidance Principle for Strong Water-Flooded Layers with High Water Cut in the S Oilfield of Bohai[J]. Petroleum Drilling Techniques, 2022, 50(3): 106-111. DOI: 10.11911/syztjs.2022013
    [5]XU Xin, WANG Wei, HU Mingyi, LI Hui, FENG Yi. Comparison and Study over the Biot Coefficients Test Methods in Medium Porosity and Medium Permeability Sandstone Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(2): 109-114. DOI: 10.11911/syztjs.2018054
    [6]CUI Wenhao, SU Zubo, KANG Jian, HAN Guangshun, LYU Yiming, ZHU Hongzheng. Key Technology of Water Detection by Dragging the Pipe String in Multi-Stage Fractured Horizontal Well[J]. Petroleum Drilling Techniques, 2018, 46(1): 97-102. DOI: 10.11911/syztjs.2018014
    [7]LI Yunfeng, ZHOU Yan, HU Zhongzhi, ZHU Kuanliang, XU Xiaofeng. Development and Field Application of High Efficiency Drag and Torsion Reducing Tool[J]. Petroleum Drilling Techniques, 2017, 45(3): 83-87. DOI: 10.11911/syztjs.201703015
    [8]LI Dianwei, YANG Zhongfu, DI Baiying, CHEN Shaoyun, WANG Jianyan. Drag and Torque Reducing Techniques on S-Shaped Directional Wells of the Rumaila Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(5): 22-27. DOI: 10.11911/syztjs.201605004
    [9]Zhang Huizeng, Guan Zhichuan, Ke Ke, Dou Yuling. The Impact of Lateral Vibration on Friction of Drill String in Horizontal Wells[J]. Petroleum Drilling Techniques, 2015, 43(3): 61-64. DOI: 10.11911/syztjs.201503012
    [10]Wang Jinbo, Wang Zhiyuan, Zhang Weiguo, Xie Hua, Sun Baojiang. Well Control Safety Operation Cycle during Typhoon at Deep Waters of South China Sea[J]. Petroleum Drilling Techniques, 2013, 41(3): 51-55. DOI: 10.3969/j.issn.1001-0890.2013.03.010
  • Cited by

    Periodical cited type(8)

    1. 刘智勤,徐加放,彭巍,徐超,于晓东. 陵水区块超深水高性能恒流变油基钻井液技术. 钻井液与完井液. 2024(02): 184-190 .
    2. 胡南丁,杨进,于辰,包苏都娜,周健一,王佳康,丁益达. 海上钻井表层导管表面摩擦力变化机理研究. 石油机械. 2022(01): 75-80 .
    3. 熊亮,谢文卫,张伟,于浩雨. 跟管钻进下套管技术在大洋钻探中的应用. 探矿工程(岩土钻掘工程). 2020(07): 16-22+35 .
    4. 王腾,何家龙,刘锦昆. 管土界面摩擦疲劳效应对深水井口导管贯入阻力的影响. 岩土工程学报. 2020(08): 1532-1539 .
    5. 邓玉明,刘正礼,赵维青,赵苏文. 南海深水钻井导管水下打桩可打性评估. 天然气与石油. 2020(06): 86-91 .
    6. 刘正礼,严德. 南海东部荔湾22–1–1超深水井钻井关键技术. 石油钻探技术. 2019(01): 13-19 . 本站查看
    7. 耿铁,邱正松,汤志川,赵欣,苗海龙. 深水钻井抗高温强抑制水基钻井液研制与应用. 石油钻探技术. 2019(03): 82-88 . 本站查看
    8. 张俊成,李忠慧,彭昊,胡尹凌,李志强. 深水环境下钻井面临的难点与解决对策. 山东化工. 2018(14): 104-107 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (1197) PDF downloads (44) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return