WANG Qing, ZHANG Jiawei, SUN Minghao, et al. Study on the settlement drag coefficient of Gulong Shale cuttings in power-law fluids in Daqing Oilfield [J]. Petroleum Drilling Techniques,2023, 51(2):54-60. DOI: 10.11911/syztjs.2023006
Citation: WANG Qing, ZHANG Jiawei, SUN Minghao, et al. Study on the settlement drag coefficient of Gulong Shale cuttings in power-law fluids in Daqing Oilfield [J]. Petroleum Drilling Techniques,2023, 51(2):54-60. DOI: 10.11911/syztjs.2023006

The Settlement Drag Coefficient of Gulong Shale Cuttings in Power-Law Fluids in Daqing Oilfield

More Information
  • Received Date: January 18, 2022
  • Revised Date: December 15, 2022
  • Available Online: December 28, 2022
  • Horizontal wells with long horizontal sections are mostly adopted in developing the Gulong shale oil in Daqing Oilfield. However, during the drilling process of the horizontal wells with long horizontal sections, the broken cuttings in the borehole annulus easily settle freely in wellbore drilling fluids to form cuttings beds. In order to avoid downhole failures such as sand sinking and sticking caused by cuttings deposition, it is necessary to study the settlement law of cuttings particles and predict the final velocity of cuttings settlement. In this paper, the settlement behavior of particles in power-law fluids was systematically recorded by visual devices and high-speed cameras during experiments. The experimental data from the free settlement of 196 groups of spherical particles and 224 groups of irregularly shaped cuttings in the power-law fluids were obtained. A mechanical model dependent on the force balance of settling particles was adopted, and the experimental data were analyzed in detail. A model for predicting the drag coefficient of spherical particles in the power-law fluids was established. On this basis, a two-dimensional shape description parameter was introduced to establish a model for predicting the drag coefficient of irregularly shaped cuttings in the power-law fluids. The prediction model showed high accuracy, and the average relative error was only 6.93%. Therefore, the model can meet the need of predicting cuttings settling velocity in drilling engineering.

  • [1]
    王春雨,杨喆,杨思琪. 12.68×108 t !大庆页岩油勘探获重大突破[J]. 油气田地面工程,2021,40(9):21.

    WANG Chunyu, YANG Zhe, YANG Siqi. 12.68×108t ! Daqing shale oil exploration made a major breakthrough[J]. Oil-Gas Field Surface Engineering, 2021, 40(9): 21.
    [2]
    孙龙德,刘合,何文渊,等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发,2021,48(3):453–463. doi: 10.11698/PED.2021.03.02

    SUN Longde, LIU He, HE Wenyuan, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 453–463. doi: 10.11698/PED.2021.03.02
    [3]
    MOREIRA B A, DE OLIVEIRA A F, DAMASCENO J J R. Analysis of suspension sedimentation in fluids with rheological shear-thinning properties and thixotropic effects[J]. Powder Technology, 2017, 308: 290–297. doi: 10.1016/j.powtec.2016.12.034
    [4]
    刘庆岭,田守嶒,李根生,等. 球形颗粒在含纤维幂律流体中沉降速度预测模型[J]. 石油科学通报,2017,2(2):298–308.

    LIU Qingling, TIAN Shouceng, LI Gensheng, et al. PrediCtion model for settling velocity of solid spheres in fiber containing power-law fluids[J]. Petroleum Science Bulletin, 2017, 2(2): 298–308.
    [5]
    DUAN Mingqin, MISKA S, YU Mengjiao, et al. Transport of small cuttings in extended-reach drilling[J]. SPE Drilling & Completion, 2008, 23(3): 258–265.
    [6]
    SORGUN M. Simple correlations and analysis of cuttings transport with Newtonian and non-Newtonian fluids in horizontal and deviated wells[J]. Journal of Energy Resources Technology, 2013, 135(3): 032903. doi: 10.1115/1.4023740
    [7]
    LARSEN T I, PILEHVARI A A, AZAR J J. Development of a new cuttings-transport model for high-angle wellbores including horizontal wells[J]. SPE Drilling & Completion, 1997, 12(2): 129–135.
    [8]
    BARATI R, NEYSHABOURI S A A S, AHMADI G. Development of empirical models with high accuracy for estimation of drag coefficient of flow around a smooth sphere: an evolutionary approach[J]. Powder Technology, 2014, 257: 11–19. doi: 10.1016/j.powtec.2014.02.045
    [9]
    CHENG Niansheng. Comparison of formulas for drag coefficient and settling velocity of spherical particles[J]. Powder Technology, 2009, 189(3): 395–398. doi: 10.1016/j.powtec.2008.07.006
    [10]
    李梦博,柳贡慧,李军,等. 考虑非牛顿流体螺旋流动的钻井井筒温度场研究[J]. 石油钻探技术,2014,42(5):74–79. doi: 10.11911/syztjs.201405013

    LI Mengbo, LIU Gonghui, LI Jun, et al. Research on wellbore temperature field with helical flow of non-Newtonian fluids in drilling operation[J]. Petroleum Drilling Techniques, 2014, 42(5): 74–79. doi: 10.11911/syztjs.201405013
    [11]
    汪海阁,刘希圣. 钻井液流变模式比较与优选[J]. 钻采工艺,1996,19(1):63–67.

    WANG Haige, LIU Xisheng. Comparison and optimization of drilling fluid rheological model[J]. Drilling & Production Technology, 1996, 19(1): 63–67.
    [12]
    GUO Xiaohui, LIN Jianzhong, NIE Deming. New formula for drag coefficient of cylindrical particles[J]. Particuology, 2011, 9(2): 114–120. doi: 10.1016/j.partic.2010.07.027
    [13]
    WANG Jinsheng, QI Haiying, ZHU Junzong. Experimental study of settling and drag on cuboids with square base[J]. Particuology, 2011, 9(3): 298–305. doi: 10.1016/j.partic.2010.11.002
    [14]
    方国球. 钻井岩粉在钻井液中自由沉降的实验研究:岩粉的沉降阻力系数及沉降速度[J]. 探矿工程(岩土钻掘工程),1995(5):41–43.

    FANG Guoqiu. An experimental study on free settlement of drilling cuttings in drilling fluid: drag coefficient and settling velocity[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 1995(5): 41–43.
    [15]
    DIOGUARDI F, MELE D. A new shape dependent drag correlation formula for non-spherical rough particles. Experiments and results[J]. Powder Technology, 2015, 277: 222–230. doi: 10.1016/j.powtec.2015.02.062
    [16]
    FERREIRA T, RASBAND W. ImageJ user guide: IJ 1.46r[M]. Bethesda: NIH, 2012: 132 − 141.
    [17]
    SHAH S N, EL FADILI Y, CHHABRA R P. New model for single spherical particle settling velocity in power law (visco-inelastic) fluids[J]. International Journal of Multiphase Flow, 2007, 33(1): 51–66. doi: 10.1016/j.ijmultiphaseflow.2006.06.006
    [18]
    KHAN A R, RICHARDSON J F. The resistance to motion of a solid sphere in a fluid[J]. Chemical Engineering Communications, 1987, 62(1/6): 135–150.
    [19]
    MACHAČ I, ULBRICHOVÁ I, ELSON T P, et al. Fall of spherical particles through non-Newtonian suspensions[J]. Chemical Engineering Science, 1995, 50(20): 3323–3327. doi: 10.1016/0009-2509(95)00168-5
    [20]
    KELESSIDIS V C, MPANDELIS G. Measurements and prediction of terminal velocity of solid spheres falling through stagnant pseudoplastic liquids[J]. Powder Technology, 2004, 147(1/3): 117–125.
    [21]
    GOOSSENS W R A. Review of the empirical correlations for the drag coefficient of rigid spheres[J]. Powder Technology, 2019, 352: 350–359. doi: 10.1016/j.powtec.2019.04.075
    [22]
    RUSHD S, HASSAN I, SULTAN R A, et al. Terminal settling velocity of a single sphere in drilling fluid[J]. Particulate Science and Technology, 2019, 37(8): 943–952. doi: 10.1080/02726351.2018.1472162
    [23]
    DIOGUARDI F, MELE D, DELLINO P. A new one-equation model of fluid drag for irregularly shaped particles valid over a wide range of Reynolds number[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(1): 144–156. doi: 10.1002/2017JB014926
    [24]
    SHAHI S, KURU E. An experimental investigation of settling velocity of natural sands in water using Particle Image Shadowgraph[J]. Powder Technology, 2015, 281: 184–192. doi: 10.1016/j.powtec.2015.04.065
  • Related Articles

    [1]CHI Jiangong. Drilling Technologies for Horizontal Wells of Gulong Shale Oil in Daqing[J]. Petroleum Drilling Techniques, 2023, 51(6): 12-17. DOI: 10.11911/syztjs.2023002
    [2]GE Luo. Experimental Study on the Migration and Adsorption of Gel Profile Control Agent in Medium-Permeability Sandstone in the Sabei Block of Daqing Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(3): 119-125. DOI: 10.11911/syztjs.2023063
    [3]LI Yuhai, LI Bo, LIU Changpeng, ZHENG Ruiqiang, LI Xiangyong, JI Bo. ROP Improvement Technology for Horizontal Shale Oil Wells in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(5): 9-13. DOI: 10.11911/syztjs.2021085
    [4]LIU Yonggui. Optimization and Application of High Performance Water-Based Drilling Fluid for Horizontal Wells in Daqing Tight Oil Reservoir[J]. Petroleum Drilling Techniques, 2018, 46(5): 35-39. DOI: 10.11911/syztjs.2018090
    [5]YANG Zhiguang. The Latest Proposals for the Advancement and Development of Drilling and Completion Technology in the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(6): 1-10. DOI: 10.11911/syztjs.201606001
    [6]Ai Chi, Hu Chaoyang, Cui Yueming. Casing Optimization for Delaying Casing Damage in the Datum Bed of the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(6): 7-12. DOI: 10.11911/syztjs.201506002
    [7]Hou Jie, Liu Yonggui, Li Hai. Application of High-Performance Water-Based Drilling Fluid for Horizontal Wells in Tight Reservoirs of Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(4): 59-65. DOI: 10.11911/syztjs.201504011
    [8]Chen Shaoyun, Li Aihui, Li Ruiying, Wang Chu, Liu Jinwei. Horizontal Well Drilling Technology in Shallow Heavy Oil Recovery in Block Puqian 12 of the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 126-130. DOI: 10.11911/syztjs.201501022
    [9]Li Ruiying, Wang Feng, Chen Shaoyun, Liu Jinwei. ROP Improvement in Deep Formations in the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 38-43. DOI: 10.11911/syztjs.201501007
    [10]Yang Juesuan. Matching Technology and Application of Gas Drilling in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2012, 40(6): 47-50. DOI: 10.3969/j.issn.1001-0890.2012.06.010
  • Cited by

    Periodical cited type(36)

    1. 翟文宝,陈朝伟,王倩,冯枭,黄浩勇,谭鹏,杨子轩. 基于地质力学的断裂滑动风险评估方法. 西安石油大学学报(自然科学版). 2025(02): 74-84 .
    2. 付海峰,刘鹏林,陈祝兴,翁定为,马泽元,李军. 基于避免断层激活机制的组合压裂模式研究. 石油机械. 2024(01): 88-97 .
    3. 刘豪,刘怀亮,刘宇,曹伟,连威,李军. 页岩气多级压裂断层动态滑移规律研究. 石油机械. 2024(02): 65-74 .
    4. 刘怀亮,樊子潇,刘宇,连威,席岩,张小军. 基于震源机制的断层滑移量计算方法. 世界石油工业. 2024(05): 40-47 .
    5. 林魂,宋西翔,杨兵,袁勇,张健强,孙新毅. 温-压耦合作用下断层滑移对套管应力的影响. 石油机械. 2023(06): 136-142+158 .
    6. 孟胡,吕振虎,王晓东,张辉,申颍浩,葛洪魁. 基于压裂参数优化的套管剪切变形控制研究. 断块油气田. 2023(04): 601-608 .
    7. 张伟,李军,张慧,王典,李托,刘怀亮. 断层滑移对套管剪切变形的影响规律及防控措施. 断块油气田. 2023(05): 734-742 .
    8. 文山师,尹陈,石学文,张洞君,韩福盛,熊财富. 天然裂缝主导模式下泸州龙马溪组页岩水力压裂多尺度破裂特征. 地球物理学进展. 2023(05): 2172-2181 .
    9. 赵欢,李玮,唐鹏飞,王晓,张明慧,王剑波. 压裂工况下近井筒地应力及套管载荷分布规律研究. 石油钻探技术. 2023(05): 106-111 . 本站查看
    10. 孟胡,申颍浩,朱万雨,李小军,雷德荣,葛洪魁. 四川盆地昭通页岩气水平井水力压裂套管外载分析. 特种油气藏. 2023(05): 166-174 .
    11. 陈朝伟,周文高,项德贵,谭鹏,宋建,陈晓军,任乐佳,黄浩. 预防页岩气套变的橡胶组合套管研制及其抗剪切性能评价. 天然气工业. 2023(11): 131-136 .
    12. 张旭,张哲平,杨尚谕,王雪刚,宋琳. 基于特征值和弧长法计算套管抗挤强度. 钻采工艺. 2022(01): 35-40 .
    13. 陈朝伟,项德贵. 四川盆地页岩气开发套管变形一体化防控技术. 中国石油勘探. 2022(01): 135-141 .
    14. 吴建忠,乔智国,慈建发,何龙,连威,李军. 基于震源机制的套管变形量控制方法研究. 石油管材与仪器. 2022(03): 24-31 .
    15. 刘鹏林,李军,席岩,连威,张小军,郭雪利. 页岩断层滑移量计算模型及影响因素研究. 石油机械. 2022(08): 74-80 .
    16. 郭雪利,沈吉云,武刚,靳建洲,纪宏飞,徐明,刘慧婷,黄昭. 韧性材料对页岩气压裂井水泥环界面完整性影响. 表面技术. 2022(12): 232-242 .
    17. 陈朝伟,黄锐,曾波,宋毅,周小金. 四川盆地长宁页岩气区块套管变形井施工参数优化分析. 石油钻探技术. 2021(01): 93-100 . 本站查看
    18. 李军,赵超杰,柳贡慧,张辉,张鑫,任凯. 页岩气压裂条件下断层滑移及其影响因素. 中国石油大学学报(自然科学版). 2021(02): 63-70 .
    19. 张平,何昀宾,刘子平,童亨茂,邓才,任晓海,张宏祥,李彦超,屈玲,付强,王向阳. 页岩气水平井套管的剪压变形试验与套变预防实践. 天然气工业. 2021(05): 84-91 .
    20. 李晓蓉,古臣旺,冯永存,丁泽晨. 考虑井筒加载历史的压裂过程中套管剪切变形数值模拟研究. 石油科学通报. 2021(02): 245-261 .
    21. 张鑫,李军,刘鹏林,郭雪利,韩葛伟. 断层滑移条件下页岩气井套管变形影响因素分析. 科学技术与工程. 2021(16): 6651-6656 .
    22. 陈朝伟,张浩哲,周小金,曹虎. 四川长宁页岩气套管变形井微地震特征分析. 石油地球物理勘探. 2021(06): 1286-1292+1198 .
    23. 张慧,李军,张小军,张鑫,连威. 页岩气井压裂液进入断层的途径及防控措施. 断块油气田. 2021(06): 750-754+760 .
    24. 林志伟,钟守明,宋琳,王雪刚,林铁军,于浩,史涛. 体积压裂改造非对称性对套管损坏影响机理. 特种油气藏. 2021(06): 158-164 .
    25. 陈朝伟,房超,朱勇,项德贵. 四川页岩气井套管变形特征及受力模式. 石油机械. 2020(02): 126-134 .
    26. 连威,李军,柳贡慧,席岩,韩葛伟. 水力压裂过程中页岩强度折减对套管变形的影响分析. 石油管材与仪器. 2020(04): 46-50 .
    27. 蒋振源,陈朝伟,张平,张丰收. 断块滑动引起的套管变形及影响因素分析. 石油管材与仪器. 2020(04): 30-37 .
    28. 范宇,黄锐,曾波,陈朝伟,周小金,项德贵,宋毅. 四川页岩气水力压裂诱发断层滑动和套管变形风险评估. 石油科学通报. 2020(03): 366-375 .
    29. 陈朝伟,曹虎,周小金,苟其勇,张浩哲. 四川盆地长宁区块页岩气井套管变形和裂缝带相关性. 天然气勘探与开发. 2020(04): 123-130 .
    30. 席岩,李军,柳贡慧,曾义金,李剑平. 页岩气水平井多级压裂过程中套管变形研究综述. 特种油气藏. 2019(01): 1-6 .
    31. 乔磊,田中兰,曾波,杨恒林,付盼,杨松. 页岩气水平井多因素耦合套变分析. 断块油气田. 2019(01): 107-110 .
    32. 高德利,刘奎. 页岩气井井筒完整性若干研究进展. 石油与天然气地质. 2019(03): 602-615 .
    33. 罗庆,黄华,徐菲,张立. 新型组合井况监测仪在普光高含硫气井的应用. 断块油气田. 2019(02): 240-243 .
    34. 陈朝伟,项德贵,张丰收,安孟可,尹子睿,蒋振源. 四川长宁—威远区块水力压裂引起的断层滑移和套管变形机理及防控策略. 石油科学通报. 2019(04): 364-377 .
    35. 周波,毛蕴才,查永进,汪海阁. 体积压裂水锤效应对页岩气井屏障完整性影响及对策. 石油钻采工艺. 2019(05): 608-613 .
    36. 郭雪利,李军,柳贡慧,陈朝伟,任凯,来东风. 基于震源机制的页岩气压裂井套管变形机理. 断块油气田. 2018(05): 665-669 .

    Other cited types(32)

Catalog

    Article Metrics

    Article views (271) PDF downloads (74) Cited by(68)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return