LI Dianwei, YANG Zhongfu, DI Baiying, CHEN Shaoyun, WANG Jianyan. Drag and Torque Reducing Techniques on S-Shaped Directional Wells of the Rumaila Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(5): 22-27. DOI: 10.11911/syztjs.201605004
Citation: LI Dianwei, YANG Zhongfu, DI Baiying, CHEN Shaoyun, WANG Jianyan. Drag and Torque Reducing Techniques on S-Shaped Directional Wells of the Rumaila Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(5): 22-27. DOI: 10.11911/syztjs.201605004

Drag and Torque Reducing Techniques on S-Shaped Directional Wells of the Rumaila Oilfield

More Information
  • Received Date: November 05, 2015
  • Revised Date: May 22, 2016
  • S-shaped directional wells in the Rumaila Oilfield are subject to large drag and torque during the drilling process and some wells experienced torques above the upper limit of rated top-drive torque. Such conditions might present significant impacts on drilling speeds, prolong required drilling time and increase drilling costs. In order to solve this problem, research was conducted on the drag and torque reducing technique in the well trajectory optimization, development and application of rotary steering system and hydraulic oscillator, drilling fluid lubricant optimization and other aspects. Accordingly, the drag and torque reducing technique was established to meet the drilling requirements of S-shaped directional wells in the Rumaila Oilfield. For this drag and torque reducing technique, S-shaped well trajectory was adopted with optimum borehole curvature of (2.85°-3.00°)/30 m and maximum hole drift angle of 30°; liquid lubricant RH3 and solid lubricant ultra-fine extruded graphite with dosage of 3% were selected; the rotary steering system was used for the directional well with horizontal displacement above 500 m or that having the construction in the Mishrif layer. At the same time, other directional wells deployed hydraulic oscillators to raise the rate of penetration and to reduce the torque. The drag and torque reducing technique was deployed in 13 S-shaped directional wells in the Rumaila Oilfield to reduce the torque by more than 30% and to raise the rate of penetration by 37.7%. It could solve the problem of large drag and torque for the S-shaped directional wells of the oilfield.
  • [1]
    方立亭.伊拉克鲁迈拉油田岩性特征及钻井风险评价[J].西部探矿工程,2015,27(5):156-159. FANG Liting.The lithology character and drilling risk assessment in Iraq Rumaila Oilfield [J].West-China Exploration Engineering,2015,27(5):156-159.
    [2]
    刁斌斌,高德利.邻井定向分离系数计算方法[J].石油钻探技术,2012,40(1):22-27. DIAO Binbin,GAO Deli.Calculation method of adjacent well oriented separation factors[J].Petroleum Drilling Techniques,2012,40(1):22-27.
    [3]
    陈绍云,李瑷辉,李瑞营,等.大庆油田葡浅12区块浅层稠油水平井钻井技术[J].石油钻探技术,2015,43(1):126-130. CHEN Shaoyun,LI Aihui,LI Ruiying,et al.Horizontal well drilling technology in shallow heavy oil recovery in Block Puqian 12 of the Daqing Oilfield[J].Petroleum Drilling Techniques,2015,43(1):126-130.
    [4]
    陈鑫,陈绍云,王楚,等.扭力冲击器在宋深9H侧钻小井眼水平井中的应用[J].石油钻采工艺,2014,36(6):32-35. CHEN Xin,CHEN Shaoyun,WANG Chu,et al.Application of TorkBuster to sidetracking of slimhole horizontal well in Well Songshen 9H[J].Oil Drilling Production Technology,2014,36(6):32-35.
    [5]
    李瑞营,王峰,陈绍云,等.大庆深层钻井提速技术[J].石油钻探技术,2015,43(1):38-43. LI Ruiying,WANG Feng,CHEN Shaoyun,et al.ROP improvement in deep formations in the Daqing Oilfield[J].Petroleum Drilling Techniques,2015,43(1):38-43.
    [6]
    陈绍云,邢琛,孙妍.提高庆深气田气体钻井效率技术研究[J].石油钻采工艺,2014,36(1):22-25,28. CHEN Shaoyun,XING Chen,SUN Yan.Technical research on improving efficiency of gas drilling in Qingshen Gas Field[J].Oil Drilling Production Technology,2014,36(1):22-25,28.
    [7]
    邸百英,杨跃波,王大力,等.古平1井井眼轨迹控制技术[J].石油钻探技术,2000,28(2):10-11. DI Baiying,YANG Yuebo,WANG Dali,et al.Well trajectory control technique in Guping 1 Well[J].Petroleum Drilling Techniques,2000,28(2):10-11.
    [8]
    沈国兵,刘明国,晁文学,等.涪陵页岩气田三维水平井井眼轨迹控制技术[J].石油钻探技术,2016,44(2):10-15. SHEN Guobing,LIU Mingguo,CHAO Wenxue,et al.3D trajectory control technology for horizontal wells in the Fuling Shale Gas Field[J].Petroleum Drilling Techniques,2016,44(2):10-15.
    [9]
    于海波,王峰,邸百英.鲁迈拉油田无固相KCl钻井液体系研究及应用[J].石油工程技术,2015,13(5):62-64. YU Haibo,WANG Feng,DI Baiying.The solid free KCl drilling fluid study and application in Rumaila Oilfield[J].Petroleum Engineering Technology,2015,13(5):62-64.
    [10]
    张国仿.涪陵页岩气田低黏低切聚合物防塌水基钻井液研制及现场试验[J].石油钻探技术,2016,44(2):22-27. ZHANG Guofang.The development and field testing of low viscosity and low gel strength polymer collapse-resistant water-based drilling fluid in the Fuling Shale Gas Field[J].Petroleum Drilling Techniques,2016,44(2):22-27.
    [11]
    张会增,管志川,柯珂,等.横向振动对水平井眼中钻柱摩阻的影响研究[J].石油钻探技术,2015,43(3):61-64. ZHANG Huizeng,GUAN Zhichuan,KE Ke,et al.The impact of lateral vibration on friction of drill string in horizontal wells[J].Petroleum Drilling Techniques,2015,43(3):61-64.
  • Related Articles

    [1]ZHEN Jianwu. Research and Field Tests of the Lubrication and Friction Reduction Technology of High Density Drilling Fluid in Horizontal Wells[J]. Petroleum Drilling Techniques, 2020, 48(5): 55-60. DOI: 10.11911/syztjs.2020076
    [2]QIAN Xiaolin, XUAN Yang, LIN Yongxue, YANG Xiaohua. Development and Application of an Environmental-FriendlyDrilling Fluid Lubricant SMLUB-E[J]. Petroleum Drilling Techniques, 2020, 48(1): 34-39. DOI: 10.11911/syztjs.2019113
    [3]LIU Yonggui. Optimization and Application of High Performance Water-Based Drilling Fluid for Horizontal Wells in Daqing Tight Oil Reservoir[J]. Petroleum Drilling Techniques, 2018, 46(5): 35-39. DOI: 10.11911/syztjs.2018090
    [4]WANG Zaiming, LI Rui, ZHU Kuanliang, HU Zhongzhi, FENG Jinghai. The Development and Field Application of JZLu-1 High-Efficiency Lubricants[J]. Petroleum Drilling Techniques, 2016, 44(5): 79-83. DOI: 10.11911/syztjs.201605013
    [5]XUE Jianglong, LIU Yingfei, ZHU Wenping, LI Yang. The Types of Reservoirs Encountered by the Wells in the Halahatang Oilfield and Water Flooding Effects[J]. Petroleum Drilling Techniques, 2016, 44(1): 85-89. DOI: 10.11911/syztjs.201601016
    [6]Ming Ruiqing, Zhang Shizhong, Wang Haitao, Hong Yi, Jiang Shulong. Research Status and Prospect of Hydraulic Oscillator Worldwide[J]. Petroleum Drilling Techniques, 2015, 43(5): 116-122. DOI: 10.11911/syztjs.201505020
    [7]Ma Mingxin, Yang Haibo, Xu Xin. Application of Hydraulic Centralizer in Unconventional Oil Well Cementing of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(1): 71-74. DOI: 10.3969/j.issn.1001-0890.2014.01.014
    [8]Xu Jingguo, You Jun, Tao Ruidong, Zhang Jianrong, Liu Yaoquan, Yang Jing. Application of Self-Oscillating Impact Drilling Tool in Dagang Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(4): 116-119. DOI: 10.3969/j.issn.1001-0890.2013.04.025
    [9]Fu Yarong. Development and Application of Anti-Eccentric Wear Water-Based Lubricant for High and Medium Water-Cut Oil Wells[J]. Petroleum Drilling Techniques, 2012, 40(5): 88-91. DOI: 10.3969/j.issn.1001-0890.2012.05.019
  • Cited by

    Periodical cited type(2)

    1. 董良. 大庆油田高温深井试油测试技术研究. 石化技术. 2025(01): 164-166 .
    2. 庞振力,杜卫刚,张宏胜,夏林,季鹏. 试油测试一体化工艺在GT1井的应用. 油气井测试. 2024(03): 32-37 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (8209) PDF downloads (14172) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return