ZHU Zuyang, WU Haiyan, ZHANG Lin, LI Fengbo, ZHAO Jinhai, ZHANG Wei. Microchip Tracer Power Supply Technology and Downhole Testing[J]. Petroleum Drilling Techniques, 2018, 46(1): 122-127. DOI: 10.11911/syztjs.2018012
Citation: ZHU Zuyang, WU Haiyan, ZHANG Lin, LI Fengbo, ZHAO Jinhai, ZHANG Wei. Microchip Tracer Power Supply Technology and Downhole Testing[J]. Petroleum Drilling Techniques, 2018, 46(1): 122-127. DOI: 10.11911/syztjs.2018012

Microchip Tracer Power Supply Technology and Downhole Testing

More Information
  • Received Date: July 26, 2017
  • Revised Date: January 04, 2018
  • A tracer,with its working performance affected greatly by the power supply,sometimes cannot collect a complete set of downhole data constrained by the source.In order to solve this problem,a power supply plan was designed using rechargeable lithium batteries as the source and the wireless charging technology to charge the battery.Through charge-discharge experiments,the relationship between charging voltage and transmission voltage,central distance of coils,and charging time,and the effects of high temperature on the discharge properties were researched.Research results showed that transmission voltage interacted with the central distance of coils.In theory,when the transmission voltage was much lower and the charging distance much longer,the charging voltage should have failed to reach the charging demands.However,on the contrary,the excessive charging voltage could result in an exploding battery due to overcharge.And,while a long charging time could assure good charging effects,the field operation duration should be further lengthened,because an overly brief charging time could also cause the inadequacy of charging;under high temperature,and thus the lithium battery could experience accelerated discharge especially compared with batteries under normal temperature.Furthermore,the field downhole tests indicated that the tracer designed as the new power supply plan could collect all temperature data for the whole wellbore.Therefore,adopting the power supply plan in this type of tracers could solve the power supply problems.
  • [1]
    马哲,杨锦舟,赵金海.无线随钻测量技术的应用现状与发展趋势[J].石油钻探技术,2007,35(6):112-115. MA Zhe,YANG Jinzhou,ZHAO Jinhai.Status quo and development trend of MWD technique[J].Petroleum Drilling Techniques,2007,35(6):112-115.
    [2]
    YU Mengjiao,HE Sufeng,CHEN Yuanhang,et al.A distributed microchip system for subsurface measurement[R].SPE 159583,2012.
    [3]
    SHI Zhaorui,CHEN Yuanhang,YU Mengjiao,et al.Development and field evaluation of a distributed microchip downhole measurement system[R].SPE 173435,2015.
    [4]
    CHEN Yuanhang,YU Mengjiao,MISKA S Z,et al.A novel approach in locatin single loss zone during deepwater drilling with distributed temperature measurement[R].SPE 170286,2014.
    [5]
    LIU Ce,LI Jing.Measurement while drilling(MWD) telemetry by wireless MEMS radio units:US20080007421[P].2008-01-10.
    [6]
    TAYLOR M R.System and method for monitoring volume and fluid flow of a wellbore:US2009066728[P].2010-06-10.
    [7]
    BABAKHANI A.Systems and methods for monitoring cement quality in cased well environment with integrated chips:US2015043117[P].2016-02-04.
    [8]
    朱祖扬,李光泉,张卫,等.井筒微芯片示踪器研制[J].石油钻探技术,2013,41(5):111-114. ZHU Zuyang,LI Guangquan,ZHANG Wei,et al.Research and manufacture of a microchip-tracer used in drilling fluids while drilling[J].Petroleum Drilling Techniques,2013,41(5):111-114.
    [9]
    李宝伟.基于无线充电技术的植入式胃肠电刺激系统的研究[D].上海:上海交通大学,2013:36-42. LI Baowei.Research on implantable gastrointestinal stimulating system based on wireless charging technology[D].Shanghai:Shanghai Jiao Tong University,2013:36-42.
  • Related Articles

    [1]HAO Xiaolong, GAO Guoyin, TAN Haifeng, YANG Cheng, LI Yuehuan. Downhole Compression Algorithm for Remote Detection Acoustic Logging Data Based on Adaptive Differential Pulse Code Modulation[J]. Petroleum Drilling Techniques, 2024, 52(6): 148-155. DOI: 10.11911/syztjs.2024078
    [2]WANG Jianlong, WANG Yuezhi, QIU Weihong, YU Chen, ZHANG Feifei, WANG Xueying. Drilling Intelligent Decision Support System Based on Big Data and Fusion Model[J]. Petroleum Drilling Techniques, 2024, 52(5): 105-116. DOI: 10.11911/syztjs.2024102
    [3]ZHOU Zhou, LI Ben, GENG Yudi, XIAO Rui. Prediction Model of Rock Mechanics Parameters in Ultra-DeepFractured Formations Based on Big Data[J]. Petroleum Drilling Techniques, 2024, 52(5): 91-96. DOI: 10.11911/syztjs.2024084
    [4]PEI Xueliang, HUANG Zhe. Exploration and Suggestion of Key Technologies for Intelligent Drilling in Sinopec Shengli Oilfield Service Corporation[J]. Petroleum Drilling Techniques, 2024, 52(5): 62-68. DOI: 10.11911/syztjs.2024087
    [5]ZENG Yijin, LI Daqi, CHEN Zengwei, ZHANG Dujie, CUI Yahui, ZHANG Feifei. Loss Analysis and Diagnosis Based on Natural Language Processing and Big Data Analysis[J]. Petroleum Drilling Techniques, 2023, 51(6): 1-11. DOI: 10.11911/syztjs.2023108
    [6]GENG Lidong. Application Status and Development Suggestions of Big Data Technology in Petroleum Engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72-78. DOI: 10.11911/syztjs.2020134
    [7]ZHANG Zhiliang, WANG Wei, YI Ming, LIU Qiang. Design and Implementation of a Downhole Safety Monitoring System[J]. Petroleum Drilling Techniques, 2020, 48(6): 65-70. DOI: 10.11911/syztjs.2020094
    [8]Ma Hai, Xiao Hongbing, Yang Jinzhou, Li Yonghua. A Real-Time LWD Data Processing Method Based on Akima Interpolation[J]. Petroleum Drilling Techniques, 2015, 43(3): 82-86. DOI: 10.11911/syztjs.201503016
    [9]Ye Zhi, Fan Honghai, Ji Rongyi, Li Chaowei, Cai Jun. Investigation and Application of Pore Pressure Monitoring Method Based on LWD Data[J]. Petroleum Drilling Techniques, 2014, 42(2): 41-45. DOI: 10.3969/j.issn.1001-0890.2014.02.009
    [10]Zhu Zuyang, Li Guangquan, Zhang Wei, Li Sanguo, Ni Weining. Research and Manufacture of a Microchip-Tracer Used in Drilling Fluids While Drilling[J]. Petroleum Drilling Techniques, 2013, 41(5): 111-114. DOI: 10.3969/j.issn.1001-0890.2013.05.022
  • Cited by

    Periodical cited type(17)

    1. 白云勃,高亮,李婕,王久全,黄伟艇,赵岩,张爱堂,段昱玮,朱华鑫. 破碎地层取心技术研究与应用. 钻探工程. 2025(02): 144-150 .
    2. 杨柳青,陈文才,曾欣. 深层超深层取心技术进展与未来解决方案. 钻采工艺. 2024(02): 113-120 .
    3. 段绪林,熊鸿照,朱绍文,刘书培,卓云,杜世轶. 提高志留系龙马溪组螺杆取心收获率技术. 天然气勘探与开发. 2024(03): 105-110 .
    4. 敬婧. 川渝地区复杂深井多层系多岩性地层取心技术. 天然气勘探与开发. 2024(04): 106-111 .
    5. 谢梦宇. 石油钻井中长筒取心技术研究. 中国新技术新产品. 2023(04): 51-53 .
    6. 王军,段绪林,余星颖,黄渝波,吴云开,李宇,雷立鸥. 筇竹寺组高角度裂缝储层取心复杂处理技术. 天然气勘探与开发. 2023(03): 140-145 .
    7. 王明华,刘维,段绪林,魏彬. 川渝地区深层破碎地层取心工艺优化研究. 钻采工艺. 2022(06): 26-30 .
    8. 王西贵,邹德永,杨立文,高玮,孙少亮,苏洋. 煤层气保温保压保形取心工具研制及现场应用. 石油钻探技术. 2021(03): 94-99 . 本站查看
    9. 王玉玺. 注水开发后期提高常规取芯收获率的方法. 西部探矿工程. 2021(10): 47-49 .
    10. 段绪林,卓云,张杰,熊鸿照,陈锦泉,张运迪. 高渗透易阻卡地层防卡旋转割心工艺——以威207井为例. 天然气勘探与开发. 2021(03): 68-72 .
    11. 曹华庆,冯云春,杨以春,张彦超,王殿学. 松辽盆地南部油气田钻井取心关键技术. 钻探工程. 2021(11): 49-55 .
    12. 石林. 辽河油田D66块火驱开发储层取心技术. 石油钻采工艺. 2019(02): 143-146 .
    13. 曹华庆,龙志平. 苏北盆地戴南组和阜宁组地层取心关键技术. 石油钻探技术. 2019(02): 28-33 . 本站查看
    14. 曹华庆,高长斌. 非常规龙马溪组和牛蹄塘组页岩取心技术. 油气藏评价与开发. 2018(02): 80-84 .
    15. 李伯尧. SY-1井页岩取心钻井工艺. 内蒙古石油化工. 2018(03): 60-63 .
    16. 苏洋,杨立文,刘兴欣. 肯基亚克盐下油田小井眼取心技术. 石油钻采工艺. 2018(01): 58-62 .
    17. 苏洋. 伊拉克格拉芙油田Mishrif储层长筒取心技术. 石油钻探技术. 2017(05): 30-35 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (4585) PDF downloads (3761) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return