Citation: | ZHOU Zhou, LI Ben, GENG Yudi, et al. Prediction model of rock mechanics parameters in ultra-deep fractured formations based on big data [J]. Petroleum Drilling Techniques, 2024, 52(5):91−96. DOI: 10.11911/syztjs.2024084 |
The rich oil and gas resources in ultra-deep reservoirs are the focus of oil and gas development at present. However, due to the high fragmentation and strong heterogeneity of rock mass in reservoirs, the traditional method of predicting reservoir mechanics parameters has a large error, which causes great difficulties in engineering design and operation. Based on a large number of experimental and field operation data, the interrelationship among reservoir logging data, reservoir fracture data, and rock mechanics data was analyzed. A multi-parameter constraint was established based on the physical correlation between rock mechanical properties, geological reservoir characteristics and logging interpretation, and a multivariate nonlinear regression fitting model was developed to predict rock mechanics parameters in the whole reservoir section of ultra-deep fractured reservoirs. The prediction model overcame the problem of large calculation errors caused by small amount of fractured formation data and could determine the rock mechanics parameters in the whole reservoir section. Compared with the actual operation parameters, the prediction accuracy is more than 90%. The research results provide technical support for the safe operation of drilling and completion in ultra-deep fractured formations.
[1] |
赵志国,白彬珍,何世明,等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术,2017,45(6):8–13.
ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 8–13.
|
[2] |
何成江,姜应兵,文欢,等. 塔河油田缝洞型油藏 “一井多控” 高效开发关键技术[J]. 石油钻探技术,2022,50(4):37–44.
HE Chengjiang, JIANG Yingbing, WEN Huan, et al. Key technologies for high-efficiency one-well multi-control development of fractured-vuggy reservoirs in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(4): 37–44.
|
[3] |
何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议[J]. 石油钻探技术,2022,50(5):1–8.
HE Licheng, TANG Bo. The up to date technologies of ultra-deep well drilling in Junggar Basin and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(5): 1–8.
|
[4] |
陈勉. 我国深层岩石力学研究及在石油工程中的应用[J]. 岩石力学与工程学报,2004,23(14):2455–2462.
CHEN Mian. Review of study on rock mechanics at great depth and its applications to petroleum engineering of China[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 26(14): 2455–2462.
|
[5] |
KHOSRAVI M, TABASI S, HOSSAM ELDIEN H, et al. Evaluation and prediction of the rock static and dynamic parameters[J]. Journal of Applied Geophysics, 2022, 199: 104581. doi: 10.1016/j.jappgeo.2022.104581
|
[6] |
AMEEN M S, SMART B G D, SOMERVILLE J M, et al. Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab-D reservoir, Ghawar field, Saudi Arabia)[J]. Marine and Petroleum Geology, 2009, 26(4): 430–444. doi: 10.1016/j.marpetgeo.2009.01.017
|
[7] |
李智武,罗玉宏,刘树根,等. 川东北地区地层条件下致密储层力学性质实验分析[J]. 矿物岩石,2005,25(4):52–60.
LI Zhiwu, LUO Yuhong, LIU Shugen, et al. The experimental analysis of mechanical properties of compact reservoir rocks under formation conditions, northeast of Sichuan Basin, China[J]. Mineralogy and Petrology, 2005, 25(4): 52–60.
|
[8] |
楼一珊,庄锦江,黄荣樽. 岩石动、静弹性参数相关性的研究及其应用[J]. 江汉石油学院学报,1989,11(2):62–69.
LOU Yishan, ZHUANG Jinjiang, HUANG Rongzun. Study on the interrelation of dynamic and static elastic parameters of rocks and its application[J]. Journal of Jianghan Petroleum Institute, 1989, 11(2): 62–69.
|
[9] |
杨秀娟,张敏,闫相祯. 基于声波测井信息的岩石弹性力学参数研究[J]. 石油地质与工程,2008,22(4):39–42.
YANG Xiujuan, ZHANG Min, YAN Xiangzhen. Study on acoustic logging-based rock elasticity parameters[J]. Petroleum Geology and Engineering, 2008, 22(4): 39–42.
|
[10] |
韩玉娇. 基于AdaBoost机器学习算法的大牛地气田储层流体智能识别[J]. 石油钻探技术,2022,50(1):112–118.
HAN Yujiao. Intelligent fluid identification based on the AdaBoost machine learning algorithm for reservoirs in Daniudi Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(1): 112–118.
|
[11] |
房好青,赵兵,汪文智,等. 塔河油田靶向压裂预制缝转向技术模拟研究[J]. 石油钻探技术,2019,47(5):97–103.
FANG Haoqing, ZHAO Bing, WANG Wenzhi, et al. Simulation study on the range of diversion in targeted fracturing of prefabricated fractures in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(4): 97–103.
|
[12] |
SINGH R, KAINTHOLA A, SINGH T N. Estimation of elastic constant of rocks using an ANFIS approach[J]. Applied Soft Computing, 2012, 12(1): 40–45. doi: 10.1016/j.asoc.2011.09.010
|
[13] |
YAGIZ S, GOKCEOGLU C. Application of fuzzy inference system and nonlinear regression models for predicting rock brittleness[J]. Expert Systems with Applications, 2010, 37(3): 2265–2272. doi: 10.1016/j.eswa.2009.07.046
|
[14] |
GUHA ROY D, SINGH T N. Predicting deformational properties of Indian coal: soft computing and regression analysis approach[J]. Measurement, 2020, 149: 106975. doi: 10.1016/j.measurement.2019.106975
|
[15] |
TORABI-KAVEH M, NASERI F, SANEIE S, et al. Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones[J]. Arabian Journal of Geosciences, 2015, 8(5): 2889–2897. doi: 10.1007/s12517-014-1331-0
|
[16] |
DEHGHAN S, SATTARI G, CHEHREH CHELGANI S, et al. Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks[J]. Mining Science and Technology (China), 2010, 20(1): 41–46. doi: 10.1016/S1674-5264(09)60158-7
|
[17] |
MANOUCHEHRIAN A, SHARIFZADEH M, MOGHADAM R H. Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics[J]. International Journal of Mining Science and Technology, 2012, 22(2): 229–236. doi: 10.1016/j.ijmst.2011.08.013
|
[18] |
RABBANI E, SHARIF F, KOOLIVAND SALOOKI M, et al. Application of neural network technique for prediction of uniaxial compressive strength using reservoir formation properties[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 56: 100–111. doi: 10.1016/j.ijrmms.2012.07.033
|
[19] |
KAUNDA R B, ASBURY B. Prediction of rock brittleness using nondestructive methods for hard rock tunneling[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(4): 533–540. doi: 10.1016/j.jrmge.2016.03.002
|
[20] |
REZAEI M, MAJDI A, MONJEZI M. An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining[J]. Neural Computing and Applications, 2014, 24(1): 233–241. doi: 10.1007/s00521-012-1221-x
|
[21] |
MOHAMAD E T, ARMAGHANI D J, MOMENI E, et al. Rock strength estimation: a PSO-based BP approach[J]. Neural Computing and Applications, 2018, 30(5): 1635–1646. doi: 10.1007/s00521-016-2728-3
|
[22] |
FRIEDMAN J H. Multivariate adaptive regression splines[J]. The Annals of Statistics, 1991, 19(1): 1–67.
|
[23] |
马建海,孙建孟. 用测井资料计算地层应力[J]. 测井技术,2002,26(4):347–352.
MA Jianhai, SUN Jianmeng. Calculate formation stress using logging data[J]. Well Logging Technology, 2092, 26(4): 347–352.
|
[1] | WANG Jianlong, WANG Yuezhi, QIU Weihong, YU Chen, ZHANG Feifei, WANG Xueying. Drilling Intelligent Decision Support System Based on Big Data and Fusion Model[J]. Petroleum Drilling Techniques, 2024, 52(5): 105-116. DOI: 10.11911/syztjs.2024102 |
[2] | LIU Jinlu, LI Jun, LIU Gonghui, LI Hui, YANG Hongwei. Prediction Model of Wellbore Temperature Field during Deepwater Cementing Circulation Stage[J]. Petroleum Drilling Techniques, 2024, 52(4): 66-74. DOI: 10.11911/syztjs.2024065 |
[3] | ZHANG Haozhe, XU Zhengming, DENG Zhilu. CFD Simulation and Prediction Model of Annular Frictional Pressure Drop with Combined Effects of Drillpipe Rotation Speed and Eccentricity[J]. Petroleum Drilling Techniques, 2023, 51(6): 32-42. DOI: 10.11911/syztjs.2023057 |
[4] | QIN Yonghe, FAN Yongtao, CHEN Wenhui, LIU Yue, LI Xiaojun, WANG Ge. Static Push-the-Bit Rotary Steering Control Model and Build-up Rate Prediction Method[J]. Petroleum Drilling Techniques, 2023, 51(4): 74-80. DOI: 10.11911/syztjs.2023077 |
[5] | HUANG Yuxin, HU Wangshui, YIN Shuai. Fracture Prediction Method for Coal-Bearing Tight Sandstone Reservoirs Based on a Dynamic Elastic Mechanics Model[J]. Petroleum Drilling Techniques, 2018, 46(5): 115-120. DOI: 10.11911/syztjs.2018082 |
[6] | TIAN Yapeng, JU Binshan, HU Jie. A Productivity Prediction Model for Heavy Oil Steam Huff and Puff Considering Steam Override[J]. Petroleum Drilling Techniques, 2018, 46(1): 110-116. DOI: 10.11911/syztjs.2018028 |
[7] | DENG Yong, CHEN Mian, JIN Yan, LU Yunhu, ZOU Daiwu. Prediction Model and Numerical Simulation for Rock Fissure Length under Impact Load[J]. Petroleum Drilling Techniques, 2016, 44(4): 41-46. DOI: 10.11911/syztjs.201604008 |
[8] | PENG Hao, LI Qian, YIN Hu, TANG Zhiqiang. A New Solution Method for the Lietard Natural Fracture Width Prediction Model[J]. Petroleum Drilling Techniques, 2016, 44(3): 72-76. DOI: 10.11911/syztjs.201603013 |
[9] | WENG Dingwei, FU Haifeng, LU Yongjun, ZHENG Lihui, MA Jianjun. A Model for Predicting the Volume of Stimulated Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(1): 95-100. DOI: 10.11911/syztjs.201601018 |
[10] | Zou Deyong, Zhao Jian, Guo Yulong, Fang Manzong, Guan Shen. A Model for Predicting Leak-off Pressure in Permeable-Sandstone Formations[J]. Petroleum Drilling Techniques, 2014, 42(1): 33-36. DOI: 10.3969/j.issn.1001-0890.2014.01.006 |
1. |
荆思霖,宋先知,孙一,许争鸣,周蒙蒙. 基于压差法的水平井岩屑床轴向运移规律研究. 石油钻探技术. 2024(01): 54-61 .
![]() | |
2. |
耿明亮,王艳萍,邓晓烽,祖也航,李昳. 单颗粒和双颗粒在聚丙烯酰胺溶液中沉降过程的数值模拟. 浙江理工大学学报(自然科学). 2024(05): 674-680 .
![]() |